
 
 

 
 

Integrated Project on Interaction and Presence  
in Urban Environments 

 
 

FP6-2004-IST-4-27571 
 

ipcity.eu 
 

 

 

Initial Demonstrators of Interaction Tools 
Deliverable D4.1 

 

 

 

 

 

 

 

     



FP-2004-IST-4-27571 Integrated Project IPCity 

 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doc-Id: D 4.1 

Version: 1.0 

Author(s): Jan Ohlenburg, 
Wolfgang Broll, 
Antti Juustila, 
Markus Sareika, 
Valérie Maquil 

Date: 2007-02-08 

Status: Final 

Availability: Public 

Distribution: Project Partners / EC / Web 

 



P6-2004-IST-4-27571 Integrated Project IPCity 

 iii 

Table of Content 
1 Workpackage Objectives ..................................................................................................1 
2 State-of-the-Art..................................................................................................................5 

2.1 Device abstraction ....................................................................................................5 
2.1.1 OpenTracker.........................................................................................................5 
2.1.2 OpenVideo............................................................................................................5 
2.1.3 VRPN....................................................................................................................5 
2.1.4 DirectShow / DirectInput .......................................................................................6 

2.2 Device-independent user interfaces .........................................................................6 
2.2.1 UIML .....................................................................................................................6 
2.2.2 MRIML ..................................................................................................................6 
2.2.3 Exchangeability of 3D interface components........................................................7 
2.2.4 PUC ......................................................................................................................7 
2.2.5 Atelier....................................................................................................................8 
2.2.6 CAPNET Device independent UI component .......................................................8 

2.3 Interaction Prototyping/Authoring .............................................................................9 
2.3.1 Behaviors..............................................................................................................9 
2.3.2 The APRIL Language ...........................................................................................9 
2.3.3 Alice ....................................................................................................................13 
2.3.4 VRSS..................................................................................................................14 
2.3.5 Geist ...................................................................................................................14 
2.3.6 alVRed................................................................................................................14 
2.3.7 DART..................................................................................................................14 
2.3.8 DWARF...............................................................................................................14 
2.3.9 AMIRE ................................................................................................................15 
2.3.10 MARS .............................................................................................................15 
2.3.11 PowerSpace ...................................................................................................15 

2.4 Ambient, Ubiquitous and Tangible Interfaces.........................................................15 
2.4.1 Tangible Bits .......................................................................................................16 

2.5 Data and event distribution.....................................................................................17 
2.5.1 Network architectures .........................................................................................17 
2.5.2 Communication middleware ...............................................................................18 
2.5.3 High-level MR frameworks..................................................................................19 

2.6 Summary of the State-of-the-art Report .................................................................21 
3 Requirement Analysis .....................................................................................................25 

3.1 Initial observations..................................................................................................25 
3.2 Device abstraction ..................................................................................................26 
3.3 Device Independent User Interfaces ......................................................................26 



FP-2004-IST-4-27571 Integrated Project IPCity 

 iv 

3.4 Interface Prototyping/Authoring ..............................................................................27 
3.5 Ambient, Ubiquitous and Tangible Interfaces.........................................................27 
3.6 Data and Event Distribution....................................................................................27 

4 Year 1 Demonstrators .....................................................................................................29 
4.1 Overview.................................................................................................................29 
4.2 Interaction Prototyping Tool....................................................................................29 

4.2.1 Description..........................................................................................................29 
4.2.2 Specification .......................................................................................................32 
4.2.3 Testing / Evaluation ............................................................................................32 

4.3 AuthOr ....................................................................................................................32 
4.3.1 Description..........................................................................................................32 
4.3.2 Specification .......................................................................................................34 
4.3.3 Testing / Evaluation ............................................................................................34 

4.4 DEVAL....................................................................................................................34 
4.4.1 Description..........................................................................................................34 
4.4.2 Specification .......................................................................................................37 
4.4.3 Testing / Evaluation ............................................................................................38 

4.5 OpenTracker extension ..........................................................................................38 
4.5.1 Description..........................................................................................................38 
4.5.2 Specification .......................................................................................................41 
4.5.3 Testing / Evaluation ............................................................................................41 

4.6 OpenVideo extension .............................................................................................41 
4.6.1 Description..........................................................................................................41 
4.6.2 Specification .......................................................................................................42 
4.6.3 Testing / Evaluation ............................................................................................42 

4.7 Color Table .............................................................................................................43 
4.7.1 Description..........................................................................................................43 
4.7.2 Specification .......................................................................................................45 
4.7.3 Testing / Evaluation ............................................................................................45 

4.8 MMS Media Extractor .............................................................................................46 
4.8.1 Description..........................................................................................................46 
4.8.2 Specification .......................................................................................................47 
4.8.3 Testing / Evaluation ............................................................................................47 

4.9 Extendable DataMatrix reader ................................................................................48 
4.9.1 Description..........................................................................................................48 
4.9.2 Specification .......................................................................................................49 
4.9.3 Testing / Evaluation ............................................................................................49 

5 Dissemination..................................................................................................................51 



FP-2004-IST-4-27571 Integrated Project IPCity 

 v 

5.1 Publications ............................................................................................................51 
5.2 Workshops..............................................................................................................51 

6 Appendix .........................................................................................................................53 
References .............................................................................................................................61 
 

 





P6-2004-IST-4-27571 Integrated Project IPCity 

 vii 

Abstract 
The cross-reality interaction tools research workpackage focuses on support of mixed reality 
user interface creation, development, and execution. In contrast to traditional user interfaces 
mixed reality user interfaces are typically not limited to one or two particular devices, but 
rather use a large variety of individual devices. No standard interaction techniques have yet 
been established in the area of mixed realities – unlike the WIMP metaphor on windows 
desktop systems. This especially applies to mobile mixed reality environments. Additionally, 
interaction techniques often involve multiple modalities. Beside this, individual platforms 
require individual solutions, while they should at least partially be exchangeable for the 
individual user. Support for user interfaces and interactions should however not be limited to 
system and implementation aspects, but also include appropriate support for authoring, or 
else creators of mixed reality content will be overwhelmed by the complexity of the process. 

In that sense we have started developing a couple of interaction and authoring tools to 
create, author and evaluate mixed reality user interfaces. A couple of demonstrators for 
device independent application development have been created, such as DEVAL, 
OpenTracker and OpenVideo, as well as a tool for collaborative planning environments using 
colored tangible user interfaces, the ColorTable. Additionally, a tool for authoring, 
orchestration and evaluation of public demonstrations by augmenting the map of the event 
area has been proposed to the showcases and two tools, which focus on interaction on 
Symbian mobile phones. 

This document summarizes the scientific and technical achievements in workpackage 4 
during the first year. According to the internal report I4.1 which includes a requirements 
analysis for WP 4, first demonstrators have been developed which have already been tested 
within several showcase. 

 

Intended Audience 
This document is intended to all partners of the project, the EC, and to the reviewers for the 
first project’s phase. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 viii 



FP6-2004-IST-4-27571 Integrated Project IPCity 

  1 

1 Workpackage Objectives 
  

Objectives Phase I 

Development of a set of generic tools for 
supporting interactions, design of multi-
model user interfaces and authoring of 
interactive Mixed Reality environments. A 
requirement analysis of the individual 
showcases will be the basis for this 
development. 

Results Phase I 

During the first phase, the following tools 
have been developed and are available as 
prototypes for the showcases: 

• Interaction Prototyping Tool: A 
component-based approach, which 
allows for modeling interaction 
techniques and object behavior from 
a set of basic components. 

• AuthOr: A map augmentation tool for 
authoring, orchestration and 
evaluation.  

• DEVAL: The DEvice Abstraction 
Layer classifies input and output 
devices in a hierarchy of functional 
interfaces for device independent 
application development. 

• OpenTracker: A generic tracking 
framework implemented with pipes 
and filters dataflow pattern. For 
IPCity OpenTracker has been 
extended by several new modules. 

• OpenVideo: Similar to OpenTracker 
it uses pipes and filters for providing 
access to video streams. 

• Color Table: Providing collaborative 
working scenarios by providing 
tangible interaction possibilities on an 
augmented table. 

• MMS Entrance: A smartphone 
application that extracts contents of 
multimedia messages and forwards 
them together with meta information 
to a PC system.  

• Extendable DataMatrix reader: 
Reads two dimensional DataMatrix 
barcodes and passes the data to 
application specific plugin 
components for processing. 

Evaluation Results Phase I The tools have been developed in the lab 
and have been partially tested as tech 



FP-2004-IST-4-27571 Integrated Project IPCity 

 2 

probes within the showcase. 

Objectives Phase II 

After an initial set of tools has been 
developed and most of them already have 
been used within the showcases, these tools 
have to be redesigned based on the 
experience and the results of the evaluation 
from the showcases. Additional tools will be 
designed and developed according to the 
needs of the showcases. The redesigned 
and new tools will be delivered to the 
showcases to be included within phase two. 

The focus of our work will be on the following 
topics and tools due to demands from the 
showcases: 

• Interaction Prototyping/Authoring: A 
graphical user interface on top of the 
language describing the interactions will 
be developed. This will be a major 
building block together with the 
language to support easy creation and 
evaluation of new interaction 
mechanisms. 

• Authoring and Orchestration 
Interface: This tool supports the 
showcases by augmenting arbitrary 
maps with 2D information, e.g. text, 
objects, users. The functionality can be 
used to author a showcase event as well 
as orchestrating and monitoring the 
running event and evaluating an event 
by playback functionality. 

• Color Table: Based on the feedback of 
users, we will further develop the 
interaction with this Tangible AR Setup. 
Adaptations of the interaction will be 
based on further feedback during the 
planned workshops and methods that 
are developed in WP3 

• Audio/Video Streaming: Publishing 
arbitrary audio and video sources to 
local and remote hosts in an efficient 
way, while providing a simple interface 
in order to access a stream. Integrate 
the streaming into the device 
abstraction. 

• Device-independent user interfaces: 
Describe user-interfaces independent of 
the final execution development and 
devices available using a mark-up 
language and/or a MR interaction 
framework. 

• Mobile content tools: A mobile tool for 
entering media (images, video, sound) 
into the MR environments. Also includes 



FP-2004-IST-4-27571 Integrated Project IPCity 

 3 

a PC/server side components for 
importing the media wirelessly (short 
range wireless connection). 

• Two dimensional, extendable mobile 
tag reader for smartphones: a tool for 
reading two dimensional bar codes for 
various purposes. 

 





FP6-2004-IST-4-27571 Integrated Project IPCity 

  5 

2 State-of-the-Art 
The state-of-the-art report covers all research areas related to Cross-Reality Interaction and 
Authoring Tools. We have identified a number of key research areas, which are already listed 
in the Technical Annex. In each of the research areas we describe the current available and 
relevant technologies and approaches. This should help the showcases to get a good 
overview about what they can use from the shelf and were additional research has to be 
conducted. 

2.1 Device abstraction 
Especially the device abstraction concept will be one of the key building blocks on which the 
different tools and showcases will rely on. By classifying the functionality of devices and map 
this classification onto a hierarchy, the device concept will be able to define common 
interfaces for each node within the hierarchy. Due to dividing the functionality of a device into 
common interfaces, the application is able to abstract from a specific device and concentrate 
on functionality, which is provided by a range of devices via the common interface. Devices 
can also be partially or fully virtualized, i.e., implemented as a combination of hardware and 
software. 

The resulting hierarchy will not only contain the common interfaces, but also the specialized 
interfaces, which provide the unique functionality of a specific device. Therefore it is possible 
to utilize a device, which is custom-tailored for a special task, while on the other hand being 
able to exchange device, which provide the same interfaces. E.g. a turning knob would be 
exchangeable by a mouse wheel. In order to exchange devices with very different 
functionality, e.g. substituting a speech recognition input by a keyboard input in a noisy 
environment, design patterns will be defined. 

2.1.1 OpenTracker  
OpenTracker [28] is a generic framework for accessing and manipulating tracking data. It 
implements the well-known pipes & filters dataflow pattern and provides an open software 
architecture based on a highly modular design and an XML configuration syntax. 
OpenTracker incorporates drivers to most commercial tracking devices. Using OpenTracker, 
MR developers can configure their tracking setup (including data fusion from multiple 
sources) with a few lines of XML code. Switching between different tracking setups does not 
require changes to the application code; instead, editing of a single XML file is sufficient. 
Since OpenTracker provides a network data-transport mechanism, mobile devices can easily 
access outside-in tracking hardware via Wireless LAN. 

2.1.2 OpenVideo 
OpenVideo is a general data integration and processing software with special support for 
video data. It implements a hardware abstraction layer by interfacing several different device 
drivers either directly or through the functionality of third party video libraries. OpenVideo is 
designed to be as extensible and easily configurable as possible. OpenVideo is currently 
implemented on windows and on linux systems.  

OpenVideo's functionality is split into two parts, the 'Core' and the 'Nodes' modules. The 
Core module is responsible for setting up the runtime environment as well as for processing 
the various entities in OpenVideo's runtime data structure. This runtime structure is 
implemented as a directed acyclic graph which consists of nodes and edges. 

2.1.3 VRPN 
The Virtual-Reality Peripheral Network (VRPN) [14][53] is an open-source project for various 
input and output devices. It provides a network transparent interface for application 
development to get access to physical devices and allows the dynamic discovery of them. In 



FP-2004-IST-4-27571 Integrated Project IPCity 

 6 

regards to the device abstraction it has only limited functionality for exchanging devices 
required for MR interactions. 

2.1.4 DirectShow / DirectInput 
Microsoft provides two device abstraction layer APIs as part of DirectX. DirectShow [12] is an 
abstraction layer for streaming media such as video and audio. By using DirectShow, the 
application developer is able to access a a wide variety of different devices to be handled 
equally, independent of the source stream. This can be an internet stream, a file or direct 
input from a device. This abstraction is achieved by providing a common interface, which has 
to be implemented by all devices and components that want to provide an appropriate audio 
or video stream. In case a component wants to upstream data, it has to implement particular 
a interface in conjunction with a filter. 

The second abstraction layer of DirectX for mouse, keyboard and joystick (including force 
feedback) devices is the DirectInput API. This abstraction layer allows direct access to these 
devices without using the Windows messaging mechanisms. Currently most available 
devices for Windows support this standard and hence it is most convenient for application 
developer. The API provides functionalities like iterating through the available devices and 
acquiring the state of a device even if the application is in background mode. Additionally, an 
application can use action mapping to retrieve and map input data without the need to know 
which device generated it. 

The obvious limitation of both APIs is the missing platform and compiler independency and 
the limited access to special device functionality, which is not covered by the interfaces. 
Especially professional video cameras provide much more functionality than offered by 
DirectShow. 

2.2 Device-independent user interfaces 
There is a large variety of interaction devices that are employed for MR applications, such as 
head-mounted displays, PDAs, space mice, tracked placeholder objects, microphones, 
gestures and so on to name just a few.  

Many MR applications are hard-coded for a specific set of input and output devices, but there 
are efforts to decouple MR applications from the underlying hardware by defining device-
independent user interfaces. 

Device-independent user interfaces are abstract specifications of user interfaces that can be 
instantiated for different hardware and software platforms. An overview of existing UIDLs is 
provided in [15]. 

2.2.1 UIML 
UIML (User Interface Markup Language, [1]) is an XML-compliant meta-language that 
provides a highly device-independent method to describe user interfaces. Interface-specific 
properties are separated into a vocabulary that is used within UIML descriptions. [13]) is an 
extension of UIML towards collaborative user interfaces. 

2.2.2 MRIML 
MRIML (Mixed Reality Interface Markup Language, [3]) – developed by Fraunhofer FIT – is a 
UIDL destined to describe user interfaces independent of a specific platform. Despite of its 
name, MRIML generally is not limited to 3D or MR user interfaces, but also provides support 
for more traditional WIMP-style user interfaces. Thus MRIML focuses on widget-based 
interface elements, while providing specific elements and extensions for MR environments. 
The basic mechanism to use MRIML is to describe a user interface by the appropriate 
elements provided by the MRIML vocabulary. This vocabulary can either be used in 
conjunction with UIML or within an independent XML-compliant MRIML description. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 7 

2.2.3 Exchangeability of 3D interface components  
As it has been noted by Lindt, device abstraction layers are not sufficient to realize device-
independent 3D user interfaces [10], since applications typically rely on specific input and 
output data. For example, exchanging a ray-cast interaction technique for selecting a 3D 
object with a speech command based interaction technique would not work, since the 
application would require pose tracking data rather than recognized speech commands. For 
realizing 3D user interfaces that are independent of particular interaction devices, 
appropriate abstraction layers for 3D interaction techniques and 3D widgets are required.  

2.2.4 PUC 
To further extend the input possibilities of Studierstube, a bridge between the Personal 
universal controller (PUC) framework [35] and Studierstube was implemented. With this 
extension the separation between input and functionality is possible. The PUC framework 
was actually designed to provide GUI on mobile devices for real devices that do not have a 
GUI. Nichols et al. describe in [35][36] a system developed as an approach for improving the 
interfaces to complex appliances by introducing an intermediary graphical or speech 
interface. This system, called personal universal controller (PUC) automatically generates a 
user interface to serve as a remote control for any application. The PUC architecture consists 
of appliance adaptors, a specification language, a communication protocol and interface 
generators. The appliances allow connection to the PUC by means of the appliance adaptor 
which represents a translation layer to its built-in protocol. The communication between PUC 
devices and appliances is enabled by a two-way communication protocol and a specification 
language that allows each appliance to describe its functions to an interface generator.  

The specification language constitutes the separation of the appliance to the type of 
interfaces it uses. The interface generator builds then the interface for the device that is 
going to control it, such as a graphical interface on a handheld or a pocket PC or a speech 
interface on a mobile phone.  

The PUC framework explicitly allows multidevice scenarios using any of the possible 
interaction methods - using the buttons of the device, using a handheld PC or a smart-phone 
- each device can be used independently and even at the same time. There is actually no 
conflict handling, so the inputs are handled in the order they arrive at the device. If someone 
mutes the device and another user using the PocketPC changes the volume, it just depends 
on which command is received last, so either the music will be louder or muted (with a louder 
setting). 

Using a handheld PC or a desktop program the states in the Studierstube can be controlled. 
For the PUC framework each Studierstube application is just another appliance providing the 
necessary interfaces. So a GUI is generated for all the states that are defined by the 
application. These states can also be changed by the application, which allows displaying 
data on the handheld device. As Studierstube is a framework for rendering 3D content 
normally most of the data will be visualized by the application using the graphic tools 
available, but some times is useful to display data also on the handheld. In Studierstube a 
similar auto GUI generation algorithm has been implemented [37]. Figure 1 shows a scripted 
PUC node in Studierstube. 

 

 

 

 

 

 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 8 

 
 

 

Using the PUC framework to describe an interface, allows rapidly developing and changing 
the interface for an application. It also allows to represent internal application states in the 
interface by defining conditions, under which a command or value may be changed. Also 
values can be displayed in a “read-only” manner, so that the value can be perceived by the 
user, but not changed.  

These widgets are then being displayed on the PIP and can be used to control the 
application. That way an abstraction layer between input and functionality is introduced to the 
Studierstube framework, allowing the application builders to concentrate on the functionality 
of the program. 

2.2.5 Atelier 
The infrastructure software platform in Atelier framework is a generic platform that allows 
different kinds of technologies to be integrated to the environment. This allows extending and 
also changing the functionality of the environment. The platform supports to bring different 
kinds of technologies, display systems and mobile devices into the space. Each of these 
components must conform to the specified interfaces of the Infrastructure. Although the 
Infrastructure itself is implemented in Java, components and systems built with other 
technologies can be integrated into the system.  The platform is discussed more in 0. 

Atelier as such does not aim to solve device independence in user interfaces, but enables 
application architecture to be designed so that services can be isolated from the devices that 
enables users to interact with the service. Thus the user interface can be a physical device 
with no “traditional” computing user interface such as the mouse and keyboard, but for 
example a barcode reader or any physical object instrumented with, say, a RFID tags and 
readers. The role of Atelier in device independent user interfaces is thus in the architecture 
design of the application or system. 

2.2.6 CAPNET Device independent UI component 
CAPNET [39] is a mobile middleware platform that supports the development of ubiquitous 
applications and services for mobile phones. The architecture includes functionality for 
interoperability, discoverability, location transparency, adaptability, and context-awareness. 
The CAPNET architecture includes an application independent GUI component for displaying 
simple graphical user interface widgets and offers interaction between the user and the 
application in a distributed way using XML-RPC. The application may reside in another 
device than the UI component. There are both J2ME [40] and Symbian OS implementations 
of the GUI component, based on XML based XUL [38]. The CAPNET GUI component can be 
integrated with the Atelier infrastructure since they both are based on the requirements of 
distributed application architectures and XML. 

DEF CIRCLE_COMMAND SoPucCommand { 
 labels ["circle", "add circle"] 
 activeIf SoPucActiveIfNode { 

  explanation ["You have to select at least 2 points to be able 
  to add a circle."] 

 activeIf SoPucActiveIfClause { 
  state = USE NUMBER_POINTS.value 
  op GREATER_THAN value 1 } 
 } #end activeIf 
 explanation ["Adds a Circle, based on 2 points that define 

  center and a point on the circle"] 
} # end circle command 

Figure 1 - Example of a PUC definition in Stb



FP-2004-IST-4-27571 Integrated Project IPCity 

 9 

2.3 Interaction Prototyping/Authoring 
The first attempts to support rapid prototyping for 3D graphics were based on text file formats 
and scripting languages such as Open Inventor [31], VRML [33] or X3D [34]. New types of 
objects and behaviors can only be added by implementing them in C++ and compiling them 
to native code. While scriptable frameworks represent an improvement in the workflow of 
programmers, who can create application prototypes without the need to compile code, they 
do not offer the necessary concepts and abstractions for controlling an application’s temporal 
structure and interactive behavior, and provide no built-in support for AR/VR devices.  

Platforms like Avango [32] or Studierstube [29] add the necessary classes to such 
frameworks to support the creation of AR/VR applications. However, from the perspective of 
an author the power of these frameworks further complicates matters rather than providing 
the required level of abstraction. 

2.3.1 Behaviors 
Behaviors (developed by Fraunhofer FIT) [3] represent a component-based approach for 
realizing interaction prototypes. A text-based description allows the developer to model user 
interactions or autonomous object behaviors from a set of existing components. These 
components represent integral elements of user interaction and object behavior. This 
description is interpreted and executed by an AR or VR environment at runtime. Behavior 
objects communicate with other system or scene graph components by events only.  Thus 
specific components exist to react to events related to particular scene graph geometry or 
issued for this Behavior, or to register for arbitrary input. Other components allow performing 
calculations, time-dependent behaviors, interpolations, etc. In order to apply changes to the 
scene graph or other system components, a component for issuing appropriate events exist. 
The control flow between the individual components of a single Behavior object is specified 
using a signal/slot mechanism. Thus, the components form a dataflow graph. In addition to 
these signal connections, data connections may be specified to transfer data values between 
component data fields. These transfers allow for implicit type conversions. 

2.3.2 The APRIL Language 
APRIL, the Augmented Reality Presentation and Interaction Language, provides elements to 
describe the hardware setup, including displays and tracking devices, as well as the content 
of the application and its temporal organization and interactive capabilities. Rather then 
developing APRIL from scratch, the authoring and playback facilities were built on top of the 
existing Studierstube [29] runtime system. The XML-based language allows expressing all 
aspects needed to create compelling interactive AR content.  

Interactions Behaviors

Story

Setup

Target Platform

Cast

 
Figure 2 - The main components of APRIL. 

The main aspects that contribute to an application are encapsulated in four top-level 



FP-2004-IST-4-27571 Integrated Project IPCity 

 10 

elements: cast, story, behaviors and interactions which are visualized in Figure 2. They can 
be easily exchanged, allowing customization of the application for different purposes. The 
story is an explicit representation of the temporal structure of the application, composed of 
individual scenes. In each scene, a predefined sequence of behaviors is executed by actors, 
which are instances of reusable components which expose certain fields for input and output. 
The transitions that advance the story from one scene to the next are triggered by user 
interaction, potentially provided by interaction components. 

Applications are modeled with UML state charts, a formalism that has been used 
successfully by other projects like alVRed [17] and for which professional graphical modeling 
tools exist. UML state charts can be hierarchical and concurrent, meaning that a state can 
contain sub-states, and there might be several states active at the same time (see Figure 3).  

introduction

running

enter

main

wizard

sh
ow_help

start

go

restart

go

leave

doenter exit

empty

help

idle

scene1 scene2

help_usershow_help

get_bored

 
Figure 3 - The storyboard of a simple APRIL application, modeled as a UML state diagram. For 

the “introduction” scene, the three timelines enter, do and exit are emphasized. 
Enumerating all elements and features that APRIL provides is beyond the scope of this 
report. Interested readers are referred to [9], where detailed information and the APRIL 
schema specification can be found. 

APRIL based Applications:  
Magic Book story 
We have made significant effort to enable the creation of visually attractive AR applications 
from simple yet powerful building blocks. These building blocks offer an easy way to facilitate 
the rendering of various multimedia elements such as 3D models, sound and animation, and 
support elementary user interaction with these components using standard AR techniques 
and hardware setups. 

The Magic Book metaphor [18] is popular and well-known in the AR community as a basic 
yet attractive application, in which users browse through a real book to view animated virtual 
content displayed on top of fiducials printed on the pages and tracked by a camera (see 
Figure 4). Using built-in APRIL components such as model to display and control visual 
parameters of a 3D model, sound to render background music or sound effects, canvas to 
display 2D textures on a 3D image plane or label to display 2D text information in AR scenes 
allow authors to quickly compose simple sequential stories with rich multimedia content.  

User interaction in the Magic Book application relies solely on predefined APRIL methods. 
The button action method automatically renders a virtual button (the use of a real button is 
also possible) with a user-defined caption and defines a navigation point to jump to a desired 
scene in the presentation sequence. The touch method checks when a user-manipulated 
fiducial serving as a 3D cursor enters or exits a 3D area surrounding another marker printed 
on a real book page. This area is defined by the hotspot component. To enable the use of 
fiducial-based pose tracking only the configurable hardware setup description file for optical 



FP-2004-IST-4-27571 Integrated Project IPCity 

 11 

tracking needs to be completed with the appropriate marker and camera parameter 
information. The control element connects the pose of a certain marker to an application 
object, the visibility attribute of which can be modified by the set method depending on the 
current story state to show or hide it on the display. 

 
Figure 4 - Two users with different AR platforms using the same application, a “Magic Book” 

created with the APRIL authoring toolkit. 
Virtual Showcase  
The Virtual Showcase has been designed to show interactive augmented reality 
presentations in a museum setting by overlaying virtual information on top of physical 
exhibition objects. User interfaces for museum visitors impose numerous requirements and 
constraints onto content authors: they should be intuitive and easy to handle, responsive, 
attractive and rich in multimedia elements, and should render a user-specific view for multiple 
visitors. Our demonstration application presents the architectural highlights and the historical 
background of the Austrian archaeological ruin Heidentor (see Figure 5). 

The hardware setup of the Virtual Showcase application is prepared to render individual 
views for up to four users using built-in CRT monitors. The displayed virtual information is 
merged with a scale model of the Heidentor by half-silvered mirrors making up the walls of a 
pyramidical showcase. Shutter glasses, tracked by a magnetic tracking system, ensure a 
stereo view of virtual augmentations correctly aligned with the physical model and matching 
the users’ viewpoint. Visitors can interact with the scene using a trackball, physical and 
virtual buttons and a tracked pen serving as a raypicker, and select the desired type of 
information such as imaginary reconstructions of the ruin, historical images or an explanatory 
narrative about the real model. 

Although such a setup normally requires a complex combination and configuration of 
hardware devices and software tools, APRIL provides a simple way to compose the setup 
description file for Virtual Showcase. The screen and display elements allow the 
configuration of virtual information rendering with adjustable parameters such as resolution, 
stereo rendering, head tracking, raypicking device and mouse pointer. The definition of stage 
elements enables the easy integration and registration of the physical model of the Heidentor 
with its virtual counterpart, and the rendering of an optional head-up display to display 
viewpoint independent 2D information. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 12 

 
Figure 5 - An archaeological ruin inside the Virtual Showcase. A raypicker is used to select 
parts of the real object for retrieving further information. A projector is used to cast virtual 

shadows onto the physical model. 
Virtual Tour Guide 
The Virtual Tour Guide application embeds a virtual animated character acting as a tour 
guide into a mobile indoor navigation application called Signpost (Reitmayr & Schmalstieg, 
2003). The user wears a mobile AR setup integrated into a backpack and a helmet, and 
perceives the augmented world through a head-mounted display (HMD). A camera mounted 
above the HMD tracks fiducials placed onto walls of the building area covered by the 
application. The markers help locate the user within this area since the system knows their 
exact position in a precisely measured virtual model of the building that has been registered 
with its real counterpart. 

The virtual tour guide character is placed into the reference frame of the real building. While 
walking around, the character provides assistance to find selected destinations and provides 
location-specific explanation about the content of various rooms and people working in them 
using body gestures (e.g. looking towards, pointing, asking the user to follow, etc.), 2D and 
3D visual elements and sound. Since the tour guide is aware of the building geometry, it 
appears to walk up real stairs and go through real doors and walkways, thus further 
enhancing integrity with the user’s physical environment. 

The tour guide character is controlled by the AR Puppet framework that is a hierarchical 
character animation system enabling the use of embodied animated agents in AR 
applications. Both AR Puppet and the Signpost navigation application are large systems with 
a complex network of internal modules responsible for various subtasks, therefore it is 
difficult and undesirable to modify their internal structure in order to establish communication 
between them. Relying on the APRIL framework’s component model and turning AR Puppet 
and Signpost into custom APRIL components enables the encapsulation of these 
frameworks’ functionality. These components can be used as black boxes that expose 
relevant input and output fields for communication with other, external components while 
hiding internal implementation details. Figure 6 illustrates the fields exposed by Signpost and 
monitored by AR Puppet to provide the tour guide character with relevant navigation 
information.  

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 13 

 
Figure 6 - Communication between the AR Puppet and Signpost systems within the APRIL 

framework. 

The expensive and bulky mobile AR system required by the Signpost application in its 
original form makes content and application authoring, debugging and testing a difficult task, 
therefore we needed to develop a desktop simulator system that is able to run the same 
navigation application with simple keyboard input and screen based output. The hardware 
abstraction feature of APRIL conveniently hides details such as the type of display or exact 
tracking setup from authors and components. Only symbolic names are used that allows 
exchanging the internal implementation of the hardware setup. See Figure 7 for an 
illustration of the Virtual Tour Guide application running on the desktop simulator and the 
mobile AR system. 

 
Figure 7 - a) The indoor tour guide application running on the desktop developer setup. b) The 

indoor tour guide application view captured from the HMD of a user wearing the mobile AR 
backpack system. In both setups a world-in-miniature view of the building mode. 

2.3.3 Alice 
Among the tools targeted towards beginners, the Alice system [21] is particularly noteworthy. 
It was designed as a tool to introduce novice programmers to 3D graphics programming. 
Alice comes with its own scene editor and an extensive set of scripting commands, but is 
clearly targeted at an educational setting. For creating “real world” applications, the 
reusability and modularity of Alice is insufficient. Also, Alice focuses on animation and 
behavior control of individual objects and does not offer any high-level concepts for 
application control. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 14 

2.3.4 VRSS 
The Virtual Reality Slide Show system (VRSS) [22] provides a set of high-level concepts for 
authoring through a collection of Python macros. VRSS draws inspiration from conventional 
slide shows, and provides the concepts necessary to the user when creating similar slide 
shows within a VR environment. 

2.3.5 Geist 
The Geist project [23] aims at the presentation of historical and cultural information for mobile 
AR users roaming a city. The Geist engine builds on a detailed analysis of drama theory and 
interactive storytelling and provides several runtime modules to support applications based 
on these concepts. Using Prolog, authors can create semiotic functions that drive the story. 
Virtual characters that are controlled by an expert system demonstrate compelling 
conversational and emotional behavior. While this approach is very general and powerful, it 
can only reveal its full potential in fairly complex applications, incorporating dynamic behavior 
of multiple real and virtual actors, and hence requires a correspondingly high effort in content 
creation. The authors do not provide details of their application examples, making it difficult 
to assess the final results. 

2.3.6 alVRed 
There are few systems that support authoring (as opposed to programming) for general 
purpose AR/VR. An initial inspiration for the work presented in this paper is alVRed [17], 
developed at Fraunhofer IMK. The alVRed project is an authoring solution which uses a 
hierarchical state machine to model the temporal structure of VR applications. In their model, 
a state represents a scene of the application, while the transitions between states represent 
changes in the application triggered by user interaction. alVRed provides a runtime engine 
built on top of the Avango [32] environment for the executing the state machines, as well as a 
number of editors for supporting various stages of content creation. Particularly interesting is 
an editor for fine-tuning graphics and animation parameters from within an immersive 
projection environment. The one area not adequately addressed by alVRed encompasses 
key AR requirements such as interaction abstraction and multi-user operation. 

2.3.7 DART 
The Designers Augmented Reality Toolkit (DART) [25] developed at GeorgiaTech is built on 
commercial software: DART extends Macromedia Director, the premier authoring tool for 
creating classical screen based multimedia applications. DART allows design students who 
are already familiar with Director to quickly create compelling AR applications, often using 
sketches and video based content rather than 3D models as a starting point. Director is an 
extremely versatile platform used by an extensive community of multimedia developers for a 
large variety of applications, and these properties are inherited by the DART plug-in. 
However, DART is ultimately limited by the technical constraints of Director, such as 
inadequate support for 3D models, stereoscopic rendering, optical see-through displays or 
multi-user applications. 

2.3.8 DWARF  
Finally, the Distributed Wearable Augmented Reality Framework (DWARF), developed at 
Technische Universität München, deserves mentioning, although it is not strictly an authoring 
solution. DWARF is a strongly component-oriented middleware, composed of communicating 
objects. In [26], the authors report on interactive development in “jam sessions”. This 
expression describes incremental prototyping of a running system by multiple programmers 
working concurrently. A graphical monitor program allows convenient inspection and remote 
control of the components. DWARF’s dynamic reconfiguration capabilities allow the 
developers to replace software components and restart parts of an application on the fly 
without re-starting the whole system. This is exceptional insofar as it pertains to a distributed 
multi-user system with full hardware abstraction capabilities rather than a single computer 



FP-2004-IST-4-27571 Integrated Project IPCity 

 15 

authoring workplace. 

2.3.9 AMIRE 
The AMIRE framework [4] is component-oriented and designed for creating MR applications 
and authoring tools. AMIRE components are configurable and communicate via in- and out-
slots, comparable to the signal/slot mechanism of the graphics library Qt.  

AMIRE allows for the development of various authoring tools adapted to the requirements in 
a certain domain. This way, authors with different background knowledge and technical skills 
can be provided with appropriate means to create MR applications. Authoring tools 
developed with the AMIRE framework are an Authoring Wizard for furniture assembly [16], 
an Oil Refinery demonstrator and an authoring application for augmenting museum 
exhibitions [2]. Typically, the result of the authoring process is a XML based application 
description that is interpreted at runtime. As the same components are used during the 
authoring process and at runtime, AMIRE allows for desktop based authoring as well as 
authoring within the MR environment. Typically, the authoring process includes the selection 
of MR components, the adaptation of the selected components, the specification of the 
connections between the components and the calibration within the MR environment. 

Similar to the Graphics Gems collection that includes useful algorithms for graphics 
programming MR Gems have been developed within AMIRE that provide solutions to 
common programming problems in MR applications such as pattern-based object 
recognition, and path animation among others [4]. 

2.3.10 MARS  
The MARS (Mobile Augmented Reality System) Authoring Tool [6] uses a timeline to arrange 
virtual objects and other media objects such as audio, video, images and text. The authoring 
tool runs on a desktop computer. The author selects media objects and arranges them 
temporally using the timeline and spatially using a 3D model of the real environment. The 
virtual content is interconnected with hyperlinks. The author may preview the MR application 
in a VR mode on the desktop. The content description is stored in a XML-file which is 
interpreted by the MARS AR presentation tool. The general layout and the timeline-oriented 
authoring approach are comparable to the multimedia authoring software Macromedia 
Director. 

2.3.11 PowerSpace  
A straight-forward approach to MR authoring is the authoring system PowerSpace [5] which 
utilizes the commercial presentation program Microsoft PowerPoint to arrange MR content. 
PowerSpace focuses on technical documentation and service manuals. The author arranges 
2D objects on PowerPoint slides. The slides are stored in an XML-based file format which 
can be interpreted by the PowerSpace editor. The PowerSpace editor allows the spatial 
arrangement of the 2D objects and the addition of 3D objects. The order of appearance that 
has been defined within PowerPoint (slide order and appearance order within a single slide) 
may be changed within the PowerSpace editor. The results of the authoring process are 
stored in the same XML file and may be viewed with the PowerSpace viewer. 

2.4 Ambient, Ubiquitous and Tangible Interfaces 
Quite a number of frameworks for ambient, ubiquitous and tangible interfaces have been 
developed, but rather than describing the frameworks – which are mostly too specific and not 
general solutions – design concepts will be described here. These design concepts are 
general guidelines for designing those interfaces. 

As ambient, ubiquitous and tangible interfaces are a combination of hard- and software it is 
rather difficult to find established “ready-to-use” frameworks. Most research groups do not 
have the capacity to manufacture hardware in large quantities (and therefore at a reasonable 
price). On the other hand - software frameworks are tightly connected to the hardware used, 



FP-2004-IST-4-27571 Integrated Project IPCity 

 16 

therefore general solutions are hard to find (or very expensive). Up to now the industry did 
not start to produce “general” ubiquitous and tangible hardware – as it is true e.g. for AR 
hardware (probably because the military is not interested in tangible computing, but in AR). 

Another solution is to use already available frameworks – like Atelier, Morgan or Opentracker 
to abstract the interfaces for applications – actually most ambient, ubiquitous and tangible 
interface frameworks utilize frameworks already available. 

Some examples that have been published in the past will be described now, to provide an 
overview of existing concepts. 

2.4.1 Tangible Bits 
 

 

 
Figure 8 From GUI to TUI [41] 

Ishii et al.describe in [41] “Tangible Bits” as their vision of Human Computer Interaction: 

"Tangible Bits" is an attempt to bridge the gap between cyberspace and the physical 
environment by making digital information (bits) tangible. We are developing ways to 
make bits accessible through the physical environment. 

Key concepts are: 

1) Interactive Surfaces: Transformation of each surface within architectural space 
(e.g., walls, desktops, ceilings, doors, windows) into an active interface between the 
physical and virtual worlds; 

2) Coupling of Bits and Atoms: Seamless coupling of everyday graspable objects 
(e.g., cards, books, models) with the digital information that pertains to them; and 

3) Ambient Media: Use of ambient media such as sound, light, airflow, and water 
movement for background interfaces with cyberspace at the periphery of human 
perception. [41] 

 

As illustrated in Figure 8, the transition of a Graphical User Interface to a Tangible User 
Interface changes the world itself into an interface. 

 

The mediaBlocks project [42] presented the use of physical markers as handles to digital 
media and a number of corresponding appliances. The project was influenced by the 
metaDESK/Tangible Geospace prototype [41][43] that introduced the phicon concept. 
Tangible Geospace was developed in part to explore physical instantiation of the GUI 
metaphor, that concentrated on tangible control of a augmented space. Making use of 
tangible interaction to navigate trough information space was also described in the 
Navigational Blocks paper [44]. Using physical objects that represent data queries, the 



FP-2004-IST-4-27571 Integrated Project IPCity 

 17 

Navigational Blocks interface allows people to explore the relationship between topics in a 
database and create simple and complex queries - but no updates of the database. 

The whiteboard-based mediaBlock functionality draws upon an earlier whiteboard TUI called 
the transBOARD [41]. The trans-BOARD used paper cards called hypercards as physical 
carriers for live and recorded whiteboard sessions. The hypercard interaction was also based 
upon barcode wanding. They concentrated on managing the tangible interaction in creating 
and manipulating the connection between physical handle and digital content. 

The ubiquitous computing vision of Weiser [45] speaks to moving computation and 
networking of the desktop and into many devices within the physical environment. Dynamic 
association between digital properties and physical handles through the tray device in 
described in [46]. The often cited Bishops Marble AnsweringMachine [47] demonstrated the 
use of passive marbles as "containers" for voice messages. Later work by Bishop prototyped 
an early object-GUI gateway and demonstrated physical objects associated with diverse 
digital content. 

The LEGO structures described in Molenbachs LegoWall prototype (discussed in [48]) are 
used to contain information about ocean-going ships. These objects were combined with 
display and control objects that could display shipping schedules and send this data to 
hardcopy printers, etc. The AlgoBlock system uses the manipulation of physical blocks to 
create computer programs [49]. The manipulatives work makes strong progress towards 
developing objects with rich digital/physical couplings. 

2.5 Data and event distribution 
One of the key issues for all distributed applications is the way how data and events are 
distributed between remote processes. Since MR applications usually involve a number of 
processes running on different hosts, due to the multi-user capability as well as the different 
components such as trackers which typically do not reside on the user’s hosts. The usability 
of a distributed MR application does strongly depend on the way how data is exchanged 
between the different processes. Inefficient message passing reduces the acceptance of the 
application by the users, since even slightly longer latencies might destroy the presence of 
the users. 

Before discussing communication middleware, low level message passing protocols and 
different network architectures are introduced. Finally, some high-level AR frameworks are 
described. 

2.5.1 Network architectures 
Network applications usually use one of the two network layer protocols, TCP and UDP, both 
sitting on top of the transport layer protocol IP. The difference between these two network 
layer protocols is the type of connection. TCP/IP is a connection-oriented reliable transfer 
protocol and UDP/IP is not. TCP/IP ensures that no transferred data is corrupted or lost and 
all data will arrive in order. In addition, at the beginning of a TCP/IP connection between two 
hosts a hand-shake is performed, where both establish parameters for the following data 
transfer. UDP/IP does not guarantee anything, neither that received data is not corrupted nor 
that data will arrive in order or at all. UDP/IP is connection-less, i.e. no handshake between 
the two hosts is performed [8].  

By ensuring reliable data transfer, TCP/IP induces longer latencies and slower data transfer 
than UDP/IP. In addition, TCP/IP utilizes congestion control, which stops sending packages 
to the remote host if the connection is congested. 

Another transport layer protocol is the multicast protocol, which enables a host to send and 
receive data to and from a group of hosts without having a direct connection to them. The 
multicast protocol is unreliable as well, but since it is able to support bulk data transfer to a 
group of receivers while limiting required bandwidth, a lot of effort is done to implement 
reliable multicast protocol. No standard has been proposed yet, due to the great challenges 



FP-2004-IST-4-27571 Integrated Project IPCity 

 18 

of this problem, also reliable multicast is widely used in frameworks for distributed virtual 
environments. 

Client/Server 
Network applications typically have two parts, the client and the server part. The server 
serves the client and usually both parts reside on different computers (hosts). If a distributed 
virtual environment uses this network architecture, the user's system provides the client 
which communicates with the server. Without loss of generality, we assume that the server is 
a stand-alone system not hosted by a user of the distributed virtual environment. A user 
connects from the client host to the server host to enter the distributed virtual environment. 

Usually the server does not forward all messages to every user. To keep network traffic low, 
only messages are forwarded which are useful for the user. 

The advantage of this network architecture is the simplicity of the centralized approach. 
Users need only one connection between their host and the server. The disadvantage of the 
Client/Server architecture is that they do not scale. While the number of users increases, the 
server becomes more and more the bottleneck of the system, since the amount of work 
increases quadratically for the server. 

Peer-to-Peer 
In a peer-to-peer network architecture each user's host is client and server at the same time. 
A user's host has to establish connections with all clients of the distributed system. This is 
done by connecting to all hosts of the system. Each user action is sent directly to all other 
users. Filtering messages for specific users to lower network traffic also applies, but has to 
be done by each client. 

The advantage of peer-to-peer architectures is that it is decentralized and extremely failure 
tolerant. If one host crashes or suffers from network congestion, no other host suffers from 
this defect. The disadvantage is that each host has to establish connections to every host of 
the community. Each host has to provide server functionalities, like persistency and 
consistency control.  

Multicast group 
Multicast networks allow arbitrarily sized groups to communicate on a network via a single 
connection. Each user message is sent to the multicast group once and is distributed to all 
users of the group. The sender can specify how far a message is sent by using the time-to-
life (ttl) field, which is decremented when it passes through a router. A ttl value of 16 will 
address all members of the group within the same local site. Distributed virtual environments 
utilizing this architecture are usually combined with a Client/Server architecture for the 
initialization phase. The user connects the server to receive the current world's scene 
information and information about the multicast group addresses used by the environment. 
After the initialization phase the user joins the multicast group to receive all update 
messages. Consistency control has to be performed by each host of the group. 

Filtering messages for specific users to lower network traffic cannot be supported, since no 
direct connection to other users is used. 

The advantage of multicast architectures is that they are scalable and the network traffic is 
reduced to a minimum. The disadvantage is that the underlying protocol is unreliable. 

2.5.2 Communication middleware 
There are many communication middleware, which work above the network protocols and 
provide more control over the network communication and abstract sockets and data 
packages. Some of them offer remote procedure calls, like XML RPC and CORBA. 

XML RPC 



FP-2004-IST-4-27571 Integrated Project IPCity 

 19 

XML RPC is a specification which uses XML and HTTP as the transport protocol to provide 
remote procedure calls for applications. Since the specification is very simple and only 
defines a small set of data types, is this very light-weight in comparison to other RPC 
systems. The specification is platform independent, because XML and HTTP is available on 
nearly every platform. Implementations for a lot of platforms do exist. 

CORBA 
CORBA [54] (Common Object Request Broker Architecture) is more than just a RPC system. 
It is an object-oriented middleware which supports the creation of heterogeneous distributed 
systems by providing APIs, communication protocols and services. CORBA is platform and 
programming language independent and applications. Since CORBA provides access to 
remote objects, it is completely location transparent. 

IDL (Interface Description Language) is used to specify the interfaces of distributed objects. 
These files are translated to skeleton and stub declarations in a particular programming 
language.  

DCOM 
DCOM (Distributed Component Object Model) allows COM objects to communicate across 
network boundaries. Since both COM and DCOM are Windows specific specifications they 
are not platform independent. 

2.5.3 High-level MR frameworks 
Studierstube 
Studierstube [29] extends OpenInventor [51], a scene-graph rendering library, and uses 
OpenTracker [28], a modular dataflow middleware for pose tracking. Both, Studierstube and 
OpenTracker make use of ACE [50] for network communication abstraction. Studierstube 
allows application development in C++ or, more rapidly, via OpenInventor scripts. 
Alternatively, application developers can choose to use APRIL [9], a high-level descriptive 
language for authoring story-driven AR presentations. 

The tracking data and events in Studierstube originate either from its scene-graph or from 
OpenTracker which serves as easily reconfigurable middleware for interfacing a very broad 
range of hardware devices and as an abstraction layer for other tracking frameworks. 
Studierstube supports two different mechanisms for data and event distribution. The acyclic 
graph traversal builds upon Inventor's event system which uses the "visitor pattern" to 
distribute events to potentially interested nodes in the scene graph. A visitor traverses the 
scene graph and calls a previously specified method on each node it encounters, which 
contains its specific event handling behaviour. This mechanism is important in cases when 
nodes need to know something about their spatial relations to other nodes (typically along a 
path), e.g. widgets. The drawback of this mechanism is the temporal responsiveness when 
traversing the scene-graph. This is suboptimal for near real time tracking which is essential 
for MR. To account for the drawbacks of this mechanism a second method for the distribution 
of data and events is available. The generic event bus works with a publish and subscribe 
mechanism which delivers data and events directly to the subscribers and makes the whole 
system very responsive. Similarities of the two distribution methods are the same source of 
events, same event data (reuse event representation) and the use of the same meta-data 
which is the description of information about events or event sources. The two different 
subscription and transport mechanisms profit from each other creating a win-win situation in 
terms of a contemporary MR-framework. 

Morgan AR/VR Framework 
Morgan [11] is a component-based framework that relies on the CORBA middleware for 
network communication. It currently supports many devices, including mouse and keyboard 
as well as haptic input devices, object tracking systems and speech recognition libraries. 
Thus, multi-modal user interfaces can be rapidly developed and evaluated. Additionally, 



FP-2004-IST-4-27571 Integrated Project IPCity 

 20 

Morgan provides a distributed render engine with automatic scene graph synchronization 
capabilities. All components are accessible from remote computers. 

A broad range of free or commercially available devices and systems have already been 
integrated into the framework, including Object tracking systems from Intersense (IS 600, IS 
900, IS 1200, InertiaCube 2, InertiaCube 3), ARToolkit [7], IBM ViaVoice, NMEA and Garmin 
GPS receiver, Stereo HMDs. 

All components of the framework can easily be located within the distributed system by a 
centralized service managing the components. This service is also responsible for remote 
instantiation of components. The central component of the framework is a render engine that 
provides high performance rendering capability for the application. Beyond standard 
functionalities like collision detection, picking and real-time CSG, the render engine has 
some unique features. The internal scene graph used to store the objects of the scene is 
designed for efficient rendering, holding only information needed for rendering. All other data 
of 3D graphics formats, e.g., semantic information, is kept in external scene graphs that 
provide the mapping of the data onto the internal scene graph. This data can later be 
mapped back into the source format without loss of semantic information. Initially, the ISO 
standard VRML’97 is supported by this mechanism.  

Distributed multi-user applications are supported by the built-in functionality of the scene 
graph to automatically synchronize itself with all other scene graphs within the distributed 
system. An abstraction layer for the frame buffer, e.g., OpenGL or Direct3D, simplifies 
support for additional frame buffers such as the upcoming Direct3D Mobile. 

A viewer realized on top of the framework provides 3D render output for the render engine. 
Besides keyboard and mouse and headtracking navigation and interaction capabilities, it 
offers different output modes, e.g., mono, quad buffered stereo and dual head stereo. They 
can all be used full screen or in a window, making it possible to display the result on a wide 
variety of displays, e.g., desktop monitors, stereo projectors, stereo headmounted displays 
and virtual glasses. Non-see-through displays, like VR glasses, can be used for AR 
environments by augmenting a video background provided by a USB or Firewire camera. 

Atelier 
The Atelier infrastructure acts as a mediator between the Atelier components, a component 
can be simple or a large system by itself. For example, an infrared remote controller device, 
such as a TV remote controller, with associated component software can be used as a 
component in the system to control any other component or system in the environment. 
Components themselves can be combined into applications, larger wholes of functional 
entities. The infrastructure contains functionality that is needed across components, and it 
also provides context for requirements that are not necessarily functional (such as the need 
for location independence).  

The infrastructure itself is based on Microkernel software architecture pattern, and can be 
expanded by providing new internal or external services. The services are then available to 
all components, that are connected to the Atelier environment. Examples of Atelier external 
services are the Hypermedia Database service – for storing hyperlinked multimedia 
information – and the Email Entrance service – for entering new media into the hypermedia 
database service by sending e-mail attachments from any kind of internet enabled device.  

The main advantage of the infrastructure is flexibility and configurability; it is possible, for 
example, to replace a positioning (tagging) technology, display or a mobile device with 
another kind, without losing the interoperability of the Atelier environment. This is feasible as 
long as the new technology is able to communicate with the Atelier environment using 
Internet technologies and XML messages. If the technology per se does not have this ability, 
it is possible to write adapters to enable the connectivity.  

This architecture thus allows us to build more than just one implementation usable in a 
specific context, but an environment that is reconfigurable and also extensible in future 
experiments utilizing different technologies. Because of the requirements for flexibility and 



FP-2004-IST-4-27571 Integrated Project IPCity 

 21 

extensibility, the specifications and design of the Atelier Infrastructure software has been 
based on the principles of expandability and abstract interfaces. The system elements 
communicate by sending XML messages that are routed by infrastructure Kernel. This 
mechanism ensures that the elements are efficiently isolated from each other. 

The Atelier infrastructure is under active development. Current development initiatives are 
the additional JXTA protocol module to support peer-to-peer networking in addition to the 
TCP/IP connected sockets, and a context service to enable social contextual information to 
be managed centrally for many simultaneous users. 

Equip Component Toolkit 
The Equip Component Toolkit (ECT) is a software toolkit for ubiquitous computing for rapidly 
prototyping and realizing ubicomp installations, applications and environment [56]. 
Additionally, it tries to increase the potential involvement of designers and users. EQUIP is 
part of the EQUATOR project.  

The toolkit supports loosely coupled distributed applications running over multiple hosts by 
creating, configuring and interconnecting of software components and component that 
represent physical devices and sensors. Data between components is mainly distributed 
through the coordination data-space, a tuple-space approach allowing tuple producers and 
consumers to be decoupled. 

2.6 Summary of the State-of-the-art Report 
This section gives an overview of all research areas related to Cross-Reality Interaction and 
Authoring Tools. Since part of these techniques is not relevant for the project itself, we 
summarize the technologies which are interesting for our goals, and will be further developed 
according to the needs of the showcases. The following table lists the core technologies 
which are interesting for the project partners. 

 Device Abstraction 

Technology Relation to WP Relevance (1 low, 5 high) 
OpenTracker OpenTracker – developed at TUG – 

will be used and extended within this 
project (see 4.5). 

5 

OpenVideo OpenVideo – developed at TUG – will 
be used and extended within this 

project (see 4.6). 

5 

VRPN VRPN is a technology relevant for 
OpenTracker and DEVAL as related 

work. 

3 

DirectShow/DirectInput Both technologies are used by DEVAL 
for accessing devices (see 4.4). 

5 

 
Device-independent user interfaces 

Technology Relation to WP Relevance (1 low, 5 high) 
UIML UIML is a standard closely related to 

MRIML. 
4 

MRIML MRIML – developed at FIT – will be 
applied to the Morgan framework, 

used and extended within the project. 

5 

Exchangeability of 3D 
interface components 

The conclusions of this work have a 
great impact on MRIML and DEVAL. 

5 



FP-2004-IST-4-27571 Integrated Project IPCity 

 22 

PUC This work could have an impact on 
MRIML. Looking at this project will 

help give insights for MRIML. 

2 

Atelier Atelier – developed at UOulu – will be 
used and extended within the project. 

5 

CAPNET CAPNET might become relevant for 
WP 4, but currently no integration is 

planned. 

2 

 

Interaction Prototyping/Authoring 

Technology Relation to WP Relevance (1 low, 5 high) 
Behaviors Behaviors – developed at FIT – will be 

used and extended within the project 
(see 4.2). 

5 

APRIL Language Minor relevance for WP 4, since it is 
currently not further developed at TUG 

and the focus lies on interactive 
storytelling. 

1 

Alice Minor relevance for WP 4 due to the 
insufficient reusability and modularity. 

1 

VRSS Minor relevance for WP 4 due to the 
focus on slide shows. 

1 

Geist Geist is intented for interactive 
storytelling and therefore only of minor 

relevance for WP 4. 

1 

alVRed Although quite interesting, the lack of 
recent development and support, 

makes it irrelevant for WP 4. 

1 

DART Due to the limitation to use 
Macromedia Director, DART has no 

relevance for WP 4. 

1 

DWARF Minor relevance from authoring 
perspective, since we chose to use 

other application frameworks, 
Studierstube, Morgan, Atelier. 

1 

AMIRE The authoring functionalities are very 
interesting for WP 4 and provide a 

good reference for development in this 
workpackage. 

3 

MARS Due to the limitation to use 
Macromedia Director, DART has no 

relevance for WP 4. 

1 

PowerSpace The authoring functionalities are very 
interesting for WP 4 and provide a 

good reference for development in this 
workpackage, but the focus of this 
authoring system is too different for 

IPCity. 

2 

 
 



FP-2004-IST-4-27571 Integrated Project IPCity 

 23 

Ambient, Ubiquitous and Tangible Interfaces 

Technology Relation to WP Relevance (1 low, 5 high) 
Tangible Bits Tangible User Interfaces have a high 

relevance for the whole workpackage, 
especially for the ColorTable (see 4.7) 

5 

 
Data and event distribution 

Technology Relation to WP Relevance (1 low, 5 high) 
Studierstube Studierstube – developed at TUG – 

will be used and extended within the 
project and is one of the main 

technologies. 

5 

Morgan AR/VR Framework Morgan – developed at FIT – will be 
used and extended within the project 
and is one of the main technologies. 

5 

Atelier Atelier – developed at UOulu – will be 
used and extended within the project 
and is one of the main technologies. 

5 

Equip Component Toolkit Equip is an interesting toolkit with 
partial comparable functionality, but 

only with minor relevance for the 
project. 

2 

 





FP6-2004-IST-4-27571 Integrated Project IPCity 

  25 

3 Requirement Analysis 
Based on a questions catalogue, which has been used to query the different showcases 
about their requirements on the basic interaction tools, we have conducted a requirement 
analysis for the first set of tools, which will be developed during the first phase of the IPCity 
project. The questions catalogue has been put together in cooperation with the Mixed Reality 
Infrastructure workpackage, and it was very helpful for the analysis since it produced 
comparable results and helped the showcases to formulate the requirements without exactly 
knowing their initial scenarios. 

The questions catalogue has five sections focusing on different aspect of the application 
scenarios of the showcases. While some questions focus on general requirements such as 
operating systems and end-user devices, other questions are directly focusing on the 
different research issues addressed by the research workpackages WP4 and WP5. 

The first requirement for all tools and services developed within this workpackage is already 
stated in Annex I: “The general success criteria for all research workpackages applies: all 
tools and services developed have to be required by at least two showcases and must 
actually be used by at least one of them. Additionally, all tools and services must be flexible 
enough to be used in other showcases and even in other projects.” 

3.1 Initial observations 
One of the key initial observations from the requirement analysis is not a very surprising one. 
Due to different reasons, the showcases will implement their application scenarios on 
different programming languages and will used different operating system. While the Time 
Warp showcase will mostly restrict their development using the C/C++ programming 
language and target at different Windows platforms, such as Windows XP and Windows 
Mobile 5, the CityTales showcase will also include JAVA application and the portable game 
consoles Playstation Portable in addition to Symbian smart phones. Similar, Large Scale 
Events and Urban Renewal are also targeting on a wider range of devices, operating 
systems and programming languages. 

Additionally, all showcases will not be able to rely on a specific hardware setup, due to 
changing environment constraints. This requires easy configuration mechanisms and tools, 
which allow for simple exchange of many interaction components, such as input modalities. 

Since the showcase developers will use existing frameworks and tools during the first phase, 
and naturally utilize those where they already have a very good knowledge of, it is very likely 
that the showcase will rely on different frameworks, network protocols and network 
architectures. One basic requirement derived from this situation is that the interaction tools 
need to be used across different frameworks and network protocols. Also, the amount of 
work required to integrate a tool developed within the research workpackages has to be as 
minimal as possible to ensure that integration of the tools is ensured across the different 
showcases. 

The main technology aim of the IPCity project is to move high-quality MR a step further from 
the labs to real settings; following this aim all showcases are targeting mobile users with a 
wide range of different mobile devices, e.g. smart phones, PDAs and Wearable MR systems, 
and also operate with nearly any available communication technology, e.g. SMS/MMS, WiFi, 
Bluetooth and 3G. Consequently, each showcase is faced with users which cannot be 
connected to application at any time and even suffer from lack of communication for quite a 
while. In order to ensure the different presence aspects for the users, the interaction tools 
and in particular the underlying frameworks have to deal with spontaneously connections and 
disconnections of the users. 

Last but not least scalability is an important issue (as for all distributed systems). Each 
showcase is targeting a large user group and even in the first phase multiple users will 
simultaneously participate in the application scenarios. Also collaboration among the users is 



FP-2004-IST-4-27571 Integrated Project IPCity 

 26 

not an initial issue for the Time Warp and the CityTales showcases, it is definitely planned for 
proceeding project phases. This requires handling scalability especially within the underlying 
tools and frameworks, which have to support such application settings, i.e. every interaction 
tool or component has to be designed and developed to deal with scalability issues. 

One problem of this requirement analysis is that the showcases are in a very early stage of 
the scenario planning, therefore some of the requirements they might have cannot be 
analyzed at this time. 

3.2 Device abstraction 
Although the state-of-the-art report for the device abstraction lists a lot of technology, which 
is already available in this area, the work in this workpackage has to go a lot further than 
that. This is basically due to the missing unified approach, which does not focus on certain 
aspects or a special class of devices, such as trackers. The replies from the showcases 
support our initial expectation that device abstraction will be one of the key research issues 
for this workpackage. If we want to support the exchangeability and the substitution of 
different device not necessarily part of the same device class we have to come up with an 
overall solution including all major devices classes. In addition to the possibility to exchange 
devices it is also very important that devices can be combined to form a new device, e.g. 
creating a 6 degrees-of-freedom tracker by combining a GPS tracker with an inertial tracker. 
It is not surprising that all of the showcases stated an interest for such functionality especially 
due to the changing hardware and environment setups of the showcase scenarios.  

The results of the questions catalogue stated the necessity to exchange different tracking 
devices and input modalities such gestures and speech commands. While the application 
scenarios of the showcase will further evolve and will become more and more concrete we 
expect them to require exchanging also other input and output devices similarly. 

The device abstraction is not only about exchangeability and combination of devices, but 
also about easy access to them. Since the showcases include end-user devices with very 
distinct capabilities in regards to processing power, memory and bandwidth, the device 
abstraction must also allow the accessing input data at different frequencies and allow 
specifying the desired information fine grained.  

3.3 Device Independent User Interfaces 
Similar to the requirements for the device abstraction and closely related are the 
requirements which came out for device independent user interfaces. But of course the 
research in this area has to go beyond device abstraction. The main research questions that 
have to be address here are how is it possible to define user interfaces in a device 
independent way and how can we exchange input modalities without changing the user 
interface description. The existing approaches listed in the state-of-the-art report can only 
serve as a starting point and the goal for this workpackage should be to take the current 
approaches further. 

The requirements for the user interface description language, which has to be developed in 
this workpackage, result from the same constraints as for the device abstraction. Each 
showcase will target at different output devices and will use a large set of interaction 
mechanisms. That means we have to decouple the description and the implementation of 
user interfaces from the execution settings such as input modalities and hardware platform. 

Because the user interfaces for the individual showcases are not completely defined yet and 
are likely to change during the time of the project, we have to closely work with the showcase 
developers together to receive constant feedback on their changing requirements. Apart from 
the overall requirements such as platform and programming language independency, 
scalability and the easy integration with other tools like the device abstraction and the 
interface prototyping and authoring tools, further requirements are difficult to extract at this 
time, since the progress in the showcase is not far enough.  



FP-2004-IST-4-27571 Integrated Project IPCity 

 27 

3.4 Interface Prototyping/Authoring 
The current available technologies from the project partners like Behaviors the rapid 
prototyping of interfaces, the APRIL language for authoring of applications in respect to 
hardware setup and content. Both will be probably used by the showcase for their 
development during the first phase of the project to realize the first demonstrators, since all 
showcases have stated an interest in developing new interfaces and interaction mechanism. 
In order to support this effort we have to develop tools which help this process and target the 
research questions how can we better support the easy creation of new interaction 
mechanisms than with the currently available tools and what are the major building blocks for 
MR interactions. 

3.5 Ambient, Ubiquitous and Tangible Interfaces 
Ambient, Ubiquitous and Tangible interfaces were stated as necessary and important for 
each of the showcases. Due to the unclear development within the showcases at this time, 
this workpackage will not start the development of any interface or a support tool for ambient, 
ubiquitous and tangible interfaces. The current state-of-the-art is sufficient for the showcases 
to start their development. The only work which will be done in this area during the first year 
will need a clear pull from the showcase, but this cannot be decide before the scenarios of 
the showcase are planned in more detail. 

For the ongoing project phases we will support the showcases by tools which help them to 
develop ambient, ubiquitous and tangible interfaces and also to realize them on different 
platforms. 

3.6 Data and Event Distribution 
The main building block to ensure integration among the different tools and services 
developed in the workpackages WP 4 and WP 5 is the data and event distribution services. 
The key requirements are obviously platform and programming language independency as 
well as a scalable approach in order to be feasible. Since the goal is to develop a service that 
allows every process on each hardware platform to exchange data and events regardless of 
a specific framework which is used, this service has to be powerful and light-weight at the 
same time. It has to be powerful, because it has to support a number of transport protocols 
starting with TCP/IP and UDP and has to provide message forwarding to work as a bridge 
between different systems. Additionally, such as service must provide functionality like 
grouping and filtering of events as well as conversion of data types, e.g. J2ME smartphones 
do not support all data types like doubles or unsigned integer naturally. In case this service 
would be used in a client/server architecture, where each clients sends the data to this 
service, which would forward them to the interested clients, persistence and logging can 
easily being integrated. 

One to other hand there must be a light-weight solution in order to allow all end-user devices 
to send and receive data and events using this service, without the requirement to implement 
a full specification. Especially, small memory and small processing power devices like PDAs 
and smart phones require a minimal implementation that serves their needs but not more. So 
one of the requirements has to be that unknown data and events can be ignored by each 
system, also the requirements for event produces, such as GPS trackers connected to a 
smart phone should be as minimal as possible. While a GPS tracker component on a laptop 
might send all available information like number of satellites, the dilution of the precision and 
the course over ground, a GPS tracker component on smart phone only sends information 
about the longitude and latitude.  

This can be achieved by defining different profiles of this service to ensure the seamless 
communication between the different profile settings.  

Other issues, which have to be addressed by this kind of distribution service, are the 
extensibility, i.e. arbitrary data and new events can be send without changing the service, 
and it should induce only a very small additional latency. 





FP6-2004-IST-4-27571 Integrated Project IPCity 

  29 

4 Year 1 Demonstrators 
During the first year, different tools have been developed and tested in order to see if these 
are suitable for the showcases. Based on the initial requirement analysis which is described 
above, a set of demonstrators have been delivered to the showcases, some of them have 
already been used for tech probes of the showcases, others have raised a high interest by 
the showcases to be used during the second phase. 

4.1 Overview 
In this section the demonstrator that have been developed during the first year are described. 
Based on the state-of-the-art report and the requirement analysis we decided after consulting 
the showcases the following list of demonstrators to be the first set of basic tools. Three of 
the demonstrators are focusing on the research issue of device independent cross-platform 
access to different input, output and streaming devices – each with a different focus. While 
OpenTracker focuses mainly on tracking devices and has now been extended to include 
multimodal input, OpenVideo is targeted at video cameras and provides the data as video 
streams. DEVAL on the other hand approaches this issue in a more general way and tries to 
include all devices, input, output and streaming devices, into one hierarchy and make them 
accessible by abstracting from specialized functionality. 

The Interaction Prototyping Tool – initially requested and utilized by the Timewarp showcase 
– allows authoring and prototyping of interactions for simple and quick evaluation of multi-
modal user interfaces. 

AuthOr is a first prototype of an authoring, orchestration and evaluation tool, which is suitable 
for all stages of a showcase event and will be part of at least one showcase, but all 
showcases have stated an interest in evaluating it for later use. 

The ColorTable fosters collaborative interactions in urban design scenarios by providing 
tangible interaction possibilities and is used in the showcase Urban Renewal. Colored 
tangible user interfaces on top of the table allow for modelling tasks in a very unintrusive and 
collaborative way. 

Two demonstrators are targeted at smartphone devices, the MMS Media Extractor extracts 
media from incoming MMS and forwards it via Bluetooth and the Extendable DataMatrix 
reader scans 2D barcodes and executes network resources as defined by the barcode. 

The research issue of data and event distribution has been started by initial conceptual work 
of the workpackage partners in order to allow inter-framework communication of data and 
events. 

4.2 Interaction Prototyping Tool 

4.2.1 Description 
This demonstrator represents the first version of the interaction prototyping tool. It is realized 
using a component-based approach, which allows for modeling interaction techniques and 
object behaviors from a set of basic components.  

In contrast to 2D desktop environments, no standards have yet been established for 3D user 
interfaces in Mixed Reality environments. Due to the variety of input and output devices and 
different interaction techniques, the realization of a particular user interface typically is quite 
difficult and time consuming. On the other hand, the user interfaces created require intensive 
user tests followed by redefinitions and adaptations or even complete reimplementations. 
This typically is not feasible if realizing the user interface techniques by programming. 

The approach here fundamentally changes this by providing an easy to use mechanism for 
defining and modifying interaction techniques and object behaviors, adapting them to the 
needs of the users on the fly.  



FP-2004-IST-4-27571 Integrated Project IPCity 

 30 

Developers of interaction techniques typically will model the corresponding interaction 
prototypes (Behavior objects) using a text-based description (see Figure 9 for an example). 
Beside a simple text-based description format, an XML-based scheme is currently evaluated 
(see Figure 10). Interaction and communication between the individual Behavior objects and 
the Mixed Reality environment is realized by events (only). 

 
Figure 9 - Interaction prototyping example (simple text file format) 

Each Behavior object typically will consist of a number of components. So far a set of 
approximately 20 basic components has been defined, while six of them are currently 
supported by the initial demonstrator. The components allow to register for certain events or 
services, to query scene graph and system status data, to react on user input, to set and 
modify system and scene objects, and to execute time-dependent behaviors. Execution of 
individual components and data transfer between them is realized by a signal/slot 
mechanism. 

  
Figure 10 - Interaction prototyping example (XML file format) - fragment 

The approach is based on previous work at FIT, where VRML’97 was extended by a similar 
mechanism (see Section 2.3.1). However, the current demonstrator expands those concepts 

 
<Behavior targets="[ XSG:X3D::*/Text ]" attach="LOAD_FILE"> 

<Sensor targets="DEVICE:Keyboard::Key::" result="Key"  
targetConditions="[ Key.key != '' ]"> 
<CONNECT from="result.Key.character" 

to="INPUT_EVALUATOR.charInput"/> 
<SIGNAL from="fire" to="EVALUATOR_KEY.execute"/> 

</Sensor> 
… 

 </Behavior> 

 
Behavior 
{ 
 targets [ XSG:X3D::*/Text ] 
 attach [ LOAD_FILE ] 
 
 Sensor 
 { 
  targets "DEVICE:Keyboard::Key" 
  targetConditions [ key != '' ] 
  result Key { }   # standard key event 
   
  CONNECT result.Key.character INPUT_EVALUATOR.charInput 
  SIGNAL fire EVALUATOR_KEY.execute 
 } 
  
 Evaluator INPUT_EVALUATOR 
 { 
  Char charInput '' 
  String text "" 
   
  statements [ text += charInput; 

text -= 1; ] 
   
  CONNECT text Action.output.text 
  SIGNAL finished Action.execute 
 } 
  
 Action 
 { 
  output Event  # user defined event 
  { 
   String 1D text "Text" 
  } 
  recipients "." # local node 
 } 
} 



FP-2004-IST-4-27571 Integrated Project IPCity 

 31 

to a far more general and flexible approach, allowing us to use this mechanism for various 
aspects: 

• Scene-graph/-object-related interaction and animation 

• Application-specific (scene-graph-independent) interaction techniques 

• Combination, modification, and simulation of input and output devices 

While for the first two areas the Behavior definitions typically are loaded by or as an 
application, manipulating scene graph objects, the third case allows us combining multiple 
devices in a flexible way. The Behaviors engine directly maps events from input devices and 
to output devices to appropriate devices in DEVAL (see Section 4.4). Figure 11 provides a 
simple example of a user interface for setting two color values for color interpolation of an 
animated object. Here all user interface elements (input, modification of color values and 
color bars) and the animation were realized using the above mechanism. The input in this 
example is published by a Button publisher. 

 
Figure 11 - Simple example of a user interface  

created by the interaction prototyping mechanism  

The current demonstrator has been realized within the Morgan AR/VR framework. In the next 
project phase it will be evaluated within showcases and further extended to support more 
components as well as component and Behavior object prototyping. Additionally a graphical 
editor is planned to be added. 

 

 

 

 

 

 

 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 32 

4.2.2 Specification 
Hardware and OS PC/laptop, Windows XP 

Software 
• Morgan Framework 

• DEVAL (see 4.4) 

Core Features 

• Modeling interaction techniques and 
object behaviors 

• Object-oriented component-based 
approach 

• Modification at run-time 

Status Early demonstrator 

Intended users Mixed Reality user interface and application 
developers 

Showcases WP 8, WP 9 

Relevance beyond project 
General mechanism applicable to all types of 
Mixed Reality and Virtual Reality 
applications 

4.2.3 Testing / Evaluation 
Due to the state of the demonstrator, no testing or evaluation has been performed. 

4.3 AuthOr 

4.3.1 Description 
This demonstrator describes a tool that will be used be the showcase to augment arbitrary 
maps with 2D overlays, e.g. lines, images, text. Such overlays are localized by a GPS 
position and can represent anything like a player position, a path, an event or a virtual item. 
Since the maps have localization information as well the overlays can be shown on top of the 
map at their exact location. Currently AuthOr interfaces with Google Earth (see Figure 12) 
and Google Maps (see Figure 13) in order to download the appropriate tiles on the fly. Other 
maps, e.g. images or satellite pictures from the NASA, will be supported during the next 
iteration. Additionally, a hybrid mode is already supported, where an alpha map is created 
from Goople Maps tiles in order to overlay only the streets onto another map, e.g. Google 
Earth (see Figure 14).  

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 33 

 

 

AuthOr is written as a Qt widget and therefore it will be very easy to integrate it into any 
authoring, orchestration and/or evaluation application.  

 
Figure 12 - Augmented satellite map of 

Cologne city centre 

 
Figure 13 - The same map region as on the 

left, except using normal maps

 

The interface of the widget provides methods to set the borders of the widget in GPS 
positions and therefore calculating the optimal zoom level. Additionally, the center of the map 
and a zoom level can be specified, from which the borders are calculated. 

The user is able to navigate with the mouse: 

• Left button click: Set new center of map. 

• Left button drag: Drag the starting location to the final location. This results in a new 
center for the map. 

• Mouse wheel: Zoom-in and zoom-out of the map. 

• Middle button click: Switch between Google Earth and Google Maps. 

The navigation can also be handled through the application by the provided interface 
methods, e.g. if AuthOr should track a player and always center the map on her position.  



FP-2004-IST-4-27571 Integrated Project IPCity 

 34 

 
Figure 14 - Same map region as above shown as a hybrid map of Cologne city centre. 

4.3.2 Specification 
Hardware and OS Windows XP, Linux 

Software 
• Qt 4.1.4 

• Morgan AR/VR Framework 

Core Features 

• Access to Google Earth tile 

• Access to Google Maps tile 

• Hybrid mode 

• Mouse-based navigation 

Status Initial prototype which will be further 
developed. 

Intended users Showcase and tools developer 

Showcases WP 6, WP 7, WP 8, WP 9 

Relevance beyond project The tool is developed as a general tool, that 
can be used  

4.3.3 Testing / Evaluation 
AuthOr is still in an early prototype state and therefore only functional tests have been 
conducted. During the general assembly of the IPCity consortium in Berlin AuthOr’s 
functionality has been demonstrated to the showcases. Afterwards all showcases stated an 
interest in using the tool for their development during the second year of the project. 

4.4 DEVAL 

4.4.1 Description 
In Mixed Reality applications standard interaction devices are usually not the mouse and the 
keyboard as it is in desktop PC-based applications, instead a large variety of heterogeneous 
interaction devices is used (see Figure 15). Device abstraction layers (compare Section 2.1 



FP-2004-IST-4-27571 Integrated Project IPCity 

 35 

and 3.2) are a possibility to allow applications to be independent of a particular device. 
DEVAL (DEVice Abstraction Layer) provides such a unified approach without focusing on a 
specific device class or specific aspects. Our approach is based on an overall device 
hierarchy, where each abstract interface exposes certain common aspects of a class of 
devices. Concrete devices are also represented by an interface of their own, which is derived 
from a number of abstract interfaces, therefore providing device specific functionality. Thus, 
we are able to abstract from the actual concrete device on the one hand and on the other 
hand allow application developer to access all functionality of specialized devices. The 
device hierarchy not only covers input devices, but also output devices and streaming 
devices.  

 
Figure 15 - Some sample input and output devices for Mixed Realities applications 

A general taxonomy covering all (input/output) devices used in Mixed Realty applications is 
provided by DEVAL and the classification allows application developers realizing Mixed 
Reality applications faster and more flexible, providing a significant higher flexibility regarding 
the devices actually used. The main requirements for our approach are: 

• New devices and device types, not already part of the classification, to naturally 
extend it, without requiring any changes to the original taxonomy. 

• Where devices can be sub-divided into logical sub-units or may only be used in part, 
should be reflected by the device hierarchy. 

• Users should be able to replace one device by another of similar functionality or even 
a set of devices at runtime (i.e. the application developer does not need to be aware 
of the particular device). 

• It should be possible to connect devices to any machine in the system, running on 
arbitrary operating systems. 

Initially, CORBA has been chosen as the general communication mechanism, since it allows 
specifying the device interfaces in a platform-independent way and also allows for separating 
the implementation (skeleton) of the device interfaces from the interface itself (stub). 
Additionally CORBA can be efficiently used for mapping the hierarchy due to multiple 
inheritance of interfaces, thus a concrete device may be derived from multiple abstract 
interfaces. 

All devices are derived from one device base class, providing a general interface to query 
and set common device information and properties, including the label, operational status 
and device features. The second level of the hierarchy is split into the main classes for input, 
output and streaming devices. Although streaming devices are technically input or output 
devices or a combination of both, they have specific requirements regarding the distribution 
of data and will therefore handled separately. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 36 

1 DOF PositionTracker

2 DOF PositionTracker

3 DOF PositionTracker

1 DOF OrientationTracker

2 DOF OrientationTracker

3 DOF OrientationTracker

Continuous Input Device

Tracker

Input Device

6 DOF Tracker
(e.g. IS 900, ARToolkit)

GPS Tracker

CyberGlove

Slider

MousePointer

Temperature Sensor

Jog Dial

Space Mouse Knob

Mouse Wheel

Discrete Input Device

Button

Speech Recognizer

Gesture Recognizer

Mouse

Space Mouse

Keyboard

 
Figure 16 - The hierarchy for input devices. Interfaces for common device classes are inherited 

by derived device classes. 

The most important subgroup of devices is the group of input devices (see Figure 16), which 
is also reflected by the fact that most existing device concepts focus on this particular 
subgroup. Input devices cover the whole range of devices used for interaction or for 
providing sensor information. Derived from Input Device are the two groups Continuous Input 
Device and Discrete Input Device. While a discrete input devices can only have a state from 
a finite set of predefined states (e.g. up or down), continuous input devices have a state 
within a predefined range (e.g. between 0 and 100). Continuous input devices differ also in 
that sense to discrete input devices, that their each state is not as critical and therefore 
missing state updates can be accepted. Two examples demonstrate this difference: 

• An application wants to react on button clicks. The Button device sends the states 
down-up-down-up as four consecutive updates. In case the application misses the 
second and third update, it will only notice one button click. 

• A virtual object is connected to the state of a Tangible Interface and the position and 
orientation of the object should reflect the pose of the real object. Even if several 
updates do not arrive at the application, the application will always be able to resynch 
if an update occurs. 

These scenarios are explicitly exploited by DEVAL. As a general mechanism for receiving 
updates the publish-subscribe pattern is used, i.e. subscribers are able to register at a 
specific device or an abstract interface for updates. Each state change of a device triggers 
that all subscribers are notified by distributing the new state. Continuous input devices allow 
subscribers to receive state changes at a maximal frequency in order to limit the bandwidth. 
This functionality is provided on a per subscriber base, i.e. each subscriber may choose their 
own maximal frequency. Of course they may also decide to receive the updates at the 
maximum frequency. Another mechanism to reduce the number of updates for a single 
subscriber is that they may choose a subset of the handled objects. An ARToolkitPlus tracker 
handles a number of distinct markers, each of them identified by a unique id. A subset of 
valid ids can be specified and thus limiting the state updates to these ids. 

As the input device hierarchy clearly shows interface may derive from multiple interfaces, 
e.g. Tracker6DOF inherits PositionTracker3DOF and OrientationTracker3DOF, and 
subscribers may subscribe at each interface providing state changes and will not have to 
deal with unnecessary information that is sent. A device derived from Tracker6DOF will 
provide its data through all interfaces in their data format, i.e. only 3-DOF orientation data is 



FP-2004-IST-4-27571 Integrated Project IPCity 

 37 

send to subscribers from OrientationTracker3DOF. Therefore it is possible to not only 
exchange devices of the same type, but any device that inherits the specific interface. 

Although an OrientationTracker2DOF sends the exact same data type as a 
PositionTracker3DOF, namely an array of three doubles, they are not exchangeable directly 
since they do not provide the same information, orientation versus position. Therefore, 
DEVAL introduces Adapters, which transform, filter or combine data from one or several 
devices and provide them through another interface, e.g. the head tracking of the Mobile AR 
System used in WP 8 transforms GPS tracking into a Cartesian coordinate system and 
combines it with an inertial tracker and acts as a Tracker6DOF. This is achieved by deriving 
the GPSInertialTracker adapter from Tracker6DOF, which subscribes at runtime at an 
OrientationTracker3DOF and a GPSTracker. 

Most of the efforts have been put into the input devices, since they are the most important for 
the showcases. Some output devices already exist as early prototypes, e.g. a Text2Speech 
component. Streaming devices have not yet been completely defined, but a first concept has 
been put together. 

DEVAL is demonstrable through the tech probes of WP 8 and the Behavior demonstrator 
(see Section 4.2). 

4.4.2 Specification 
Hardware and OS Windows XP, Linux 

Software 

• CORBA 

• Morgan AR/VR Framework 

• Device drivers 

Core Features 

• Realization of concrete devices 

o Intersense IS-600, IS-900, IS-1200 

o Intersense Inertia Cube 2 + 3 

o XSens Tracker 

o ARToolkitPlus 

o Nmea GPS Tracker 

o Mouse and Keyboard 

• Publish-Subscribe pattern 

o Selection of max. update frequency 

o Selection of object subset 

o Subscription to derived interfaces 

Status stable prototype 

Intended users Showcase developers 

Showcases WP 8, WP 9 

Relevance beyond project 

Device abstraction layers are relevant for all 
Mixed Reality applications that are 
dependent from a variety of interaction 
devices. 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 38 

4.4.3 Testing / Evaluation 
DEVAL and the discrete devices have been tested by WP 8 and the Behavior demonstrator. 

4.5 OpenTracker extension 

4.5.1 Description 
The generic tracking framework OpenTracker implements the well-known pipes & filters 
dataflow pattern and provides an open software architecture. OpenTracker's functionality is 
provided by nodes that describe sources, transformations and sinks of tracking data. Nodes 
are in turn supported by modules that implement any special functions such as device 
drivers, computations and network code. The Multi-Modal Event Streams of OpenTracker 
where introduced by Spiczak et al [55]. OpenTracker was further extended by the following 
new modules which integrate new devices and enable well known as well as new interaction 
possibilities for applications.  

• Camera Control - Zoom and Pan Tilt Unit 

• Space Device Module  

• GoGo Interaction  

• Virtual Key Module 

• 3D to 2D Filter 

• Sys Mouse Sink 

The functionality and typical applications of these specific OpenTracker modules will be 
described in detail below. 

 

Camera Control – Zoom and Pan Tilt Unit  
The OpenTracker PTU-Node provides control for the viewing direction and the zoom level of 
the mounted camera. The interface for relative input to this node allows the use of various 
devices which are supported by OpenTracker and deliver relative data. A typical device used 
for the control is a Wireless Joy Pad as in Figure 17. 

 
Figure 17 - PTU and Wireless Joypad 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 39 

Space Device Module 
Tracking input from an expert device like the Spaceball in Figure 18 can be distributed within 
the OpenTracker graph through a space device node. The output of this node is relative and 
therefore needs to be modified in order to be able to manipulate e.g. an absolute position of 
a virtual object in the scene.  That’s why this node would typically be used in combination 
with a GoGo Node which does this kind of data conversion. 

 
Figure 18 - Spaceball - simultaneous 6DOF interaction 

 
GoGo Interaction 

This new module converts relative data input to an absolute location on the output side of the 
node. Furthermore this node provides some convenience functionality when used in 
combination with the Studierstube framework where a special scenegraph node is used for 
interactively configuring the behavior of the data conversion. Control in the opposite direction 
is used for interactively changing the virtual representation of the device. This is like 
changing the appearance of a mouse pointer. 

 

Virtual Key Module 
The Virtual Key is a generic tool which distributes the current state of a key on the keyboard 
in OpenTracker. This data source can be configured individually for indicating any keys state 
and can be used in multiple instances.  

 

3D to 2D Filter 
This Filter converts a 3D Input of an absolute device position with respect to a virtual screen 
(ASPD) see Figure 19 which is calibrated by 4 points in space and located by a 6 DOF input. 
The output of this filter is a normalized 2D point which is typically a screen point. 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 40 

                 
Figure 19 - Virtual screen location 

The 3D to 2D filter is intended to be used with the Sys Mouse Sink node but not restricted to 
this configuration. The typical application is shown in  where the projected image is calibrated 
and a pointing device is used as mouse input. The 3D to 2D Filter supports multiple 
instances and therefore allows controlling multiple computer systems with just one device.  

 

Sys Mouse Sink 
The Sys Mouse Sink has an input for absolute and relative data and therefore supports a 
very wide range of devices. It forwards the input events to the mouse control of the current 
computer system. An application scenario is visualized in Figure 20. 

 
Figure 20 - 3D to 2D OpenTracker node in combination with the Sys Mouse Sink for controlling 

multiple applications 



FP-2004-IST-4-27571 Integrated Project IPCity 

 41 

4.5.2 Specification 
Hardware and OS Windows XP, Linux 

Software 
• OpenTracker 

• Studierstube AR/VR Framework 

Core Features 

• Camera control unit node for PTU 

• Space Device input node 

• Virtual Key input node 

• 3D to 2D Filter node 

• Generic System Mouse Sink 

Status Stable prototypes which will be further 
developed. 

Intended users Showcase and tools developers as well as 
MR-application designers and expert users 

Showcases This prototype is available for all interested 
showcases and is currently used in WP6 

Relevance beyond project 
Can be reused in appropriate context due to 
generic design 

Contributes to MR research community 

4.5.3 Testing / Evaluation 
The prototypes were tested with Urban Sketcher on various occasions see WP6: 

 

• Workshop at Sainte Anne, Paris, June 15th-16th, 2006 

• Workshop at the Vienna Urban Renewal Office, Vienna, September 25th-26th, 2006 

• Demo at General Assembly (reduced version), Berlin, October 18th-20th 2006 

• Open Lab Night, Graz, October 9th 2006 

• Vienna Workshop, November 16th, 2006 

 

4.6 OpenVideo extension 

4.6.1 Description 
OpenVideo is designed to be extensible and easily configurable on windows and on Linux 
systems. The runtime structure of OpenVideo is implemented as a directed acyclic graph 
which consists of nodes and edges with special support for video data. The integration of 
OpenVideo into the Studierstube framework is the basis for video augmentation where the 
scene is rendered on top of the video background. In current demonstrators the visual input 
is used in the Urban Sketcher. In Figure 21 a white canvas is registered in the scene for 
sketching. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 42 

 
Figure 21 - Video background in Studierstube used in the Urban Sketcher 

 

4.6.2  Specification 
Hardware and OS Windows XP, Linux 

Software • OpenVideo 

Core Features • Video image distribution 

Status Stable/beta prototype 

Intended users Showcase and tools developers as well as 
MR-application designers and expert users 

Showcases This prototype is available for all interested 
showcases and is currently used in WP6  

Relevance beyond project 
Can be reused in appropriate context due to 
generic design 

Contributes to MR research community 

4.6.3 Testing / Evaluation 
The prototype was tested with Urban Sketcher on various occasions see WP6: 

 

• Workshop at Sainte Anne, Paris, June 15th-16th, 2006 

• Workshop at the Vienna Urban Renewal Office, Vienna, September 25th-26th, 2006 

• Demo at General Assembly (reduced version), Berlin, October 18th-20th 2006 

• Open Lab Night, Graz, October 9th 2006 

• Vienna Workshop, November 16th , 2006 



FP-2004-IST-4-27571 Integrated Project IPCity 

 43 

 

4.7 Color Table 

4.7.1 Description 
The main ambition of the Color Table is to support collaborative working scenarios by 
providing tangible interaction possibilities.  

The system consists of a white surface placed on a conventional table and a large amount of 
colored objects of different shape and size that may be placed and manipulated on the table. 
The users may thus stand around the table and interact simultaneously from different 
positions. 

 
Figure 22 – Overview of the Color Table 

A video camera is placed above the table and captures the current state of the system. It 
tracks the positions, colors and sizes of the different colored shapes placed on the table.  

Two projections allow reflecting the current state of the system. A horizontal one is situated 
directly on the table and serves therefore as augmentation of the tangible table. It is mainly 
used to provide additional information such as feedback to the user. A vertical projection is 
placed in front of the users and shows a visualization of the situation the users are creating. 
The individual parts of the Color Table are explained in Figure 22. 

The system of the Color Table includes different tangible interaction modules that may be 
used independently: 

• Colored Objects Interface 

• Barcode Interface 

• Rotating Color Table 

 

Colored Objects Interface 
The colored shapes, currently cylinders of 7 different colors, may be repositioned on the 
table in order to interact with the system. Their positions, sizes and colors are used to 
manipulate the state of different elements of an application.  

In this way, the colored objects interface can for example be used to control virtual objects in 
a mixed reality scene. The colored shapes are linked to various types of digital content that 
may be moved within space by moving the corresponding physical objects on the table. Each 
color defines a different virtual object. Small, green triangles can be attached to cylinders in 
order to manipulate the orientation of 3D models. Figure 23 shows the colored shapes in 
use. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 44 

 
Figure 23 – The colored shapes may be repositioned on the table. 

 

Barcode Interface 
The barcode interface enables users to easily access elements of the Hyper Media Database 
by reading in dedicated barcodes. These elements can be 3D models, 2D partly transparent 
pictures and sound files to be used within the application, or commands controlling other 
parameters of the application.  

Depending on the purpose of the application, the barcodes may be presented differently to 
the users. Figure 24 shows the arrangement of barcodes on separate sheets within a booklet 
(left), and on a cardboard (right). 

 
Figure 24 – Users may read barcodes in order to select elements of the Hyper Media Database. 

 

Rotating Color Table 
The rotating Color Table (see Figure 25) is a tangible interface manipulating of the 
orientation of the viewpoint within a 3D environment. The disk, on which the colored shapes 
are lying, may be rotated in order to rotate the whole scene around the user.  

 
Figure 25- The Rotating Color Table at the Vienna Workshop 



FP-2004-IST-4-27571 Integrated Project IPCity 

 45 

4.7.2 Specification 

Hardware and OS 
4 Dell Laptops (IP M Processor, 2.13 Ghz) 

Windows XP 

Software 

• JAVA 1.5.0_05 

• JMF 2.1.1e 

• Atelier Framework (see 2.2.5) 

• Hyper Media Database 

• Apache Tomcat 4.1 

• MySQL 4.0.13 

• OpenTracker 2.0 (see 2.1.1) 

• Studierstude 4.0 (see 2.5.3) 

• OpenCV beta 5 

Core Features 

• tangible Interaction through 
manipulation of colored objects 

• barcodes to activate commands and 
selecting content 

• rotating color table for navigation. 

Status Technology Probe 

Intended users 5-7 users coming from various fields  

Showcases This prototype is available for all interested 
showcases and is used in WP6 

Relevance beyond project  

4.7.3 Testing / Evaluation 
The demonstrator and the included technology probes have been tested at 4 Workshops: 

• St. Anne, Paris, Workshop (June 15-16, 2006) 

 
Figure 26 - Workshop at St. Anne, Paris 

• GB16, Vienna, Workshop (September 25-26, 2006) 



FP-2004-IST-4-27571 Integrated Project IPCity 

 46 

 
Figure 27 - Workshop GB16, Vienna 

• MCIS, Venice, Workshop (October 8, 2006) 

• Vienna Workshop with architects (November 16, 2006) 

 
Figure 28 - Workshop with architect, Vienna 

The demonstrator has also been shown at the Beginner’s Day at Vienna University of 
Technology 

4.8 MMS Media Extractor 

4.8.1 Description 
The MMS Media Extractor demonstrator is a smartphone application which can be used to 
extract media (text, images, video, sound) from a MMS (Multimedia Messaging System) 
message. This media and associated metadata can then be automatically sent over 
Bluetooth™ using OBEX protocol to any device that supports these protocols. Currently 
there is one component (a WP5 deliverable) which is capable of receiving these files. The 
component is depicted in Figure 29), on the left side of the figure (right side showing how the 
media is then used). The concrete plan is to use the MMS Media Extractor with the WP7 
scenarios Forage, and generally in any other showcase in IPCity where generation and entry 
of user generated media with mobile phones is feasible. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 47 

 
Figure 29 - MMS Media Extractor and examples of related server side components. 

 

The MMS Media Extractor on the phone side consists of a Symbian application programmed 
with C++. The application monitors the phone’s messaging inbox for MMS (multimedia) 
messages. As a message arrives, the attachments (text, images, videos, sound files, etc) are 
extracted. Also, a meta-information file, describing the user that sent the message and the 
sent files is created. This meta-information file along with the multimedia and text files are 
sent over Bluetooth™ using OBEX (Object Exchange) protocol to a PC. In future, more 
meta-information in addition to the user can be added to enhance the functionality of the 
application (e.g. location based on CellID or GPS, nearby Bluetooth device names). 

 

4.8.2 Specification 
Hardware and OS Nokia N70, Symbian OS v. 8.1a, Series60 

2nd Ed FP3 

Software 
• MMS inbox reader 

• BT/OBEX sender 

Core Features 
Extracts contents of multimedia messages 
and sends the contents along with a metafile 
to a PC side system for further processing 

Status Beta prototype 

Intended users Any users who need to import media by 
using camera phones 

Showcases WP7, others 

Relevance beyond project Usable in other similar contexts 

4.8.3 Testing / Evaluation 
The component been tested but further integration testing will be done during December 
2006/January 2007. 

1. Users send MMS messages to 
a MMS Media Extractor device 

2. MMS Media Extractor module extracts 
the media from the messages, creates a 
metafile and sends them to the PC side 
system. 

3. Bluetooth Media Dispatcher receives, validates 
and stores the media files with metadata into a 
virtual file system (VFS). 

A virtual file system can be implemented as a web 
service, database, Hypermedia database, FTP 
server, etc. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 48 

4.9 Extendable DataMatrix reader 

4.9.1 Description 
Using camera phones to read and interpret two dimensional barcodes for various purposes is 
currently a popular topic in both research and in practical applications. Two dimensional 
barcodes can be used to access data and services, like bus time tables, product information 
etc. There are standards for the two dimensional barcodes, but implementations are usually 
application specific and closed. This implementation uses a publicly availabe DataMatrix 
standard (Figure 30). Thus there are no need to pay for any licenses when using the 
DataMatrixes. For more information, see e.g. http://en.wikipedia.org/wiki/Datamatrix. 

 
Figure 30: An example of a DataMatrix barcode. 

This implementation is based on the design of extendibility. The application is designed 
based on a plugin architecture. This enables us to extend the functionality of the system so 
that the actual content of the read barcode specifies also the intended interpretation and 
handling of the barcode data. It is designed that the produced barcode can contain a URN 
(Uniform Resource Name) or a URL (Uniform Resource Locator). The URL is used in most 
currently known implementations. The URL can be a link to a web page or a web service, 
such as a product description or a location specific information such as a timetable for a 
specific bus stop at the current time. In our design the barcode can – in addition to URLs – 
contain a URN; an application specific code, followed by the application specific data. This 
enables us to create applications and services on the phone that are not dependent on the 
network or services on the network. The URN is embedded in the beginning of the barcode 
data, followed by the application data. 

As the barcode is read the application first checks if the code contains a URL or a URN. If 
the code contains a URL, the browser on the device is directed to that page. If the code 
contains a URN, the plugin repository on the phone is searched for the plugin component 
that supports handling of that specific URN. If one is found, the remaining of the data is 
passed on to that plugin component. New plugin components can be installed on the device 
to support new types of extensions. The handling of the data is plugin (application) specific. 

As an example, the application can be used to provide location specific data and services to 
the user without accessing the phone network. For example, the barcode could contain an 
instruction for the application to capture an image using the camera on the phone and send it 
to a specific recipient (e.g. the MMS or Email Entrance; see WP5 demonstrators). Or the 
barcode could instruct the phone to get a random media file over Bluetooth™ from a nearby 
Bluetooth enabled media server – a story that a user left about a specific spot in the city 
(relates to the City tales showcase). 



FP-2004-IST-4-27571 Integrated Project IPCity 

 49 

Currently the demonstrator is in early beta stage; the image capturing and analysis is on final 
development and testing stage, as the plugin architecture is in early design and 
implementation phase. 

4.9.2 Specification 
Hardware and OS Nokia N70, Symbian OS v. 8.1a, Series60 

2nd Ed FP3 

Software Image analysis component, data handler 
plugin components 

Core Features 
Reads two dimensional bar codes and 
passes the data to application specific plugin 
component for handling 

Status Beta prototype 

Intended users Showcase users 

Showcases All showcases 

Relevance beyond project Will be published as an open source 
implementation 

4.9.3 Testing / Evaluation 
Image capturing and analysis works currently in beta stage. Plugin components will be 
developed starting January/February 2007. 





FP6-2004-IST-4-27571 Integrated Project IPCity 

  51 

5 Dissemination 
 

5.1 Publications 
 

Ohlenburg, Jan, Broll, Wolfgang, and Lindt, Irma, “DEVAL – AR/VR Device Abstraction Layer 
Implementation”, accepted as publication in Proceedings of Universal Access in Human-
Computer Interaction (UAHCI) 2007, 2007. 

5.2 Workshops 
During the following workshops the results of the Color Table have been demonstrated and 
have been evaluated: 

Workshop at Sainte Anne, Paris, June 15-16, 2006 
The Color Table producing simple mixed reality scenes, the texture brush and the Urban 
Sketcher have been presented and discussed as design concepts in the psychiatric hospital 
in Sainte Anne. In this first workshop only the architects engaged at Sainte-Anne, some 
hospital staff including two old professors of psychiatry, and additional urban planners were 
included. 

Workshop at the Vienna Urban Renewal Office, Vienna, September 25-26, 2006 
The rotating Color Table producing see-through augmentations and panorama 
augmentations, as well as the Urban Sketcher and the 3D image reconstruction have been 
shown as early prototypes in the urban renewal office of Vienna’s 16th district. Participants in 
this workshop were members of IPCity from TUW, TUG, UOulu, and UMVL on the one hand, 
members of the urban renewal office itself, as well as two collaborating architects, an urban 
sociologist, and two representatives of local authorities. 

The Beginner's trail at TUW, October 2, 2006 
The rotating Color Table in use with a panorama augmentation has been shown at the TUW 
within the scope of a presentation of our department to new students. 

MCIS Workshop, San Servolo, Venice, October 8, 2006 
In this workshop, the Color Table has been presented outdoors, in combination with a see-
through augmentation. Participants have been young artists and people with a background in 
CSCW and philosophy.  They were asked to select images and sound for preparing a scene 
or sequence of scenes that would allow them to explore aspects of presence. 
Vienna Workshop, November 16, 2006 
The rotating Color Table producing see-through augmentations and panorama 
augmentations has been showed at TUW. The barcode application has been improved in 
order to provide more control to the users. Participants of the workshop have been with 
visitors from Oslo University (mainly colleagues from the interaction design field). 





FP6-2004-IST-4-27571 Integrated Project IPCity 

  53 

6 Appendix 
The Requirement Analysis (see Section 3) has been conducted based on a questions 
catalogue to be filled out by all showcases. On the following pages, the questions catalogue 
can be found. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 54 

 
 



FP-2004-IST-4-27571 Integrated Project IPCity 

 55 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 56 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 57 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 58 

 



FP-2004-IST-4-27571 Integrated Project IPCity 

 59 

 
 



FP-2004-IST-4-27571 Integrated Project IPCity 

 60 



FP6-2004-IST-4-27571 Integrated Project IPCity 

  61 

References 
 

[1] Abrams, M. “Device-Independent Authoring with UML”. Proc. W3C Workshop Web 
Device Independent Authoring, 1999 

[2] Abawi, D., Dörner, R., Haller, M., and Zauner, J. “Efficient Mixed Reality Application 
Development”. Proceedings of the 1st European Conference on Visual Media 
Production. London, March, 2004. 

[3] Broll, W., Lindt, I., Ohlenburg, J., Herbst, I., Wittkämper, M., and Novotny, T., “An 
Infrastructure for Realizing Custom-Tailored Augmented Reality User Interfaces”, IEEE 
Transaction on Visualization and Computer Graphics, Vol.11,No.6, November 2005, 
pp. 722-733. 

[4] Grimm, P., Haller, M., Paelke, V., Reinhold, S., Reimann, C., and Zauner, J., “AMIRE – 
Authoring Mixed Reality”. The First IEEE International Augmented Reality Toolkit 
Workshop, Darmstadt, Germany, September, 2002. 

[5] Haringer, M. and Regenbrecht, H. T., “A pragmatic approach to Augmented Reality 
Authoring”, ISMAR’02, Darmstadt, Germany, September/October 2002. 

[6] Höllerer, T., Feiner, S., and Pavlik, J. “Situated Documentaries: Embedding Multimedia 
in the Real World”. Proceedings of the ISWC’99 (International Symposium on Wearable 
Computers”, San Francisco, CA, October 18-19, 1999. 

[7] Kato, H., Billinghurst, M., Blanding, B., and May, R. “ARToolKit”. Technical Report. 
Hiroshima City University. December 1999. 

[8] Kurose, J. F., and Ross, K., “Computer Networking: A Top-Down Approach Featuring 
the Internet”. Addison-Wesley, 2nd edition, 2002. 

[9] Ledermann, F. and Schmalstieg, D., “APRIL: A High-Level Framework for Creating 
Augmented Reality Presentations”. Proc. IEEE Virtual Reality, 2005 

[10] Lindt, I., “Exchangeability of 3D Interaction Techniques”, IEEE VR 2005 Workshop 
on New Directions in 3D User Interfaces, Bonn, 2005. 

[11] Ohlenburg, J., Herbst, I., Lindt, I., Fröhlich, T., and Broll, W. ”The MORGAN 
Framework: Enabling Dynamic Multi-User AR and VR Projects“, Proc. ACM Symp. 
Virtual Reality Software and Technology (VRST 2004), pp. 166-169, 2004 

[12] Pesce, M. D., “Programming Microsoft DirectShow for Digital Video and Television”, 
Microsoft Press, 2003. 

[13] Sandor, C. and  Reicher, T., “CUIML: A Language for the Generation of Multimodal 
Human-Computer Interaction”, Proc. European UIML Conf., 2001 

[14] Tayler II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., and Helser, A.T., 
“VRPN: A Device-Independent, Network-Transparent VR Peripheral System”, Proc. 
ACM Symp. Virtual Reality Software and Technology (VRST 2001), 2001 

[15] Trewin, S., Zimmermann, G., and Vanderheiden, G. “Abstract User Interface 
Representations: How well do they Support Universal Access?” In Proceedings of CHI 
2003, 2003. 

[16] Zauner, J., Haller, M., Brandl, A., and Hartmann, W. “Authoring of a Mixed Reality 
Assembly Instructor for Hierarchical Structures”, ISMAR’03, Second International 
Symposium on Mixed and Augmented Reality, 2003. 

[17] Beckhaus, S., Lechner, A., Mostafawy, S., Trogemann, G., and Wages, R. “alVRed - 
Tools for storytelling in virtual environments”. Internationale Statustagung Virtuelle und 
Erweiterete Realität, Leipzig, Germany, 2002. 



FP-2004-IST-4-27571 Integrated Project IPCity 

 62 

[18] Billinghurst, M., Kato, H., and Poupyrev, I. “The Magic-Book - Moving Seamlessly 
between Reality and Virtuality”. IEEE Computer Graphics and Applications, vol. 21(3), 
6-8, 2001. 

[19] Bimber, O., Fröhlich, B., Schmalstieg, and D., Encarnacao, L. M. “The virtual 
showcase”. IEEE Computer Graphics and Applications, 21(6):48-55, 2001. 

[20] Clark J. XSL transformations (XSLT) version 1.0 - W3C recommendation. 
http://www.w3.org/TR/xslt, 1999. 

[21] Conway, M., Pausch, R., Gossweiler, R., and Burnette, T. “Alice: A rapid prototyping 
system for building virtual environments”. Proceedings of ACM CHI'94 Conference on 
Human Factors in Computing Systems, volume 2, 295-296, 1994. 

[22] Fuhrmann A., Prikryl, J., Tobler, R., and Purgathofer, W. “Interactive content for 
presentations in virtual reality”. Proceedings of the ACM Symposium on Virtual Reality 
Software & Technology. 

[23] Kretschmer, U., Coors, V., Spierling, U., Grasbon, D., Schneider, K., Rojas, I., and 
Malaka, R. “Meeting the spirit of history”. Proceedings of VAST 2001, Athens, Greece, 
2001. 

[24] Ledermann, F. “An authoring framework for augmented reality presentations”. Master’s 
thesis, Vienna University of Technology, 2004. 

[25] MacIntyre, B., Gandy, M., Dow, S., and Bolter, J. “DART: A Toolkit for Rapid Design 
Exploration of Augmented Reality Experiences”. Proceedings of User Interface 
Software and Technology (UIST'04), Sante Fe, New Mexico, 2004. 

[26] MacWilliams, A., Sandor, C., Wagner, M., Bauer, M., Klinker, G., and Bruegge, B. 
“Herding Sheep: Live System Development for Distributed Augmented Reality”. 
Proceedings ISMAR 2003, Tokyo, Japan, 2003. 

[27] Object Management Group. “Unified modeling language (UML)”, version 1.5. 
http://www.omg.org/technology/documents/formal/uml.htm, 2003. 

[28] Reitmayr G. and Schmalstieg, D. “OpenTracker - an open software architecture for 
reconfigurable tracking based on XML”. Proceedings of IEEE Virtual Reality 2001, 
pages 285-286, Yokohama, Japan, 2001. 

[29] Schmalstieg D., Fuhrmann, A., Hesina, G., Szalavari, Zs., Encarnacao, L. M., 
Gervautz, M., and Purgathofer, W. “The Studierstube augmented reality project. 
PRESENCE - Teleoperators and Virtual Environments”, 11(1). 

[30] Stoakley, R., Conway, M., and Pausch, R. “Virtual reality on a WIM: interactive worlds 
in miniature”. Proceedings on human factors in computing systems, 265-272, Denver, 
USA, 1995. 

[31] Strauss, P. and Carey, R. “An object oriented 3D graphics toolkit”. Proceedings of 
SIGGRAPH '92, 1992. 

[32] Tramberend H. “Avocado: A distributed virtual reality framework”. Proceedings of IEEE 
Virtual Reality 1999, 1999. 

[33] VRML Consortium. “VRML97 specification”. Specification 147721:1997, ISO/IEC, 1997. 

[34] Web3D Consortium. X3D specification website. 
http://www.web3d.org/x3d/specifications/. 

[35] J. Nichols and B. A. Myers. “Studying the use of handhelds to control smart 
appliances”. In Proceedings of the 23rd International Conference on Distributed 
Computing Systems Workshops (ICDCS ’03), pages 274–279, May 19–22 2003. 

[36] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, and M. 
Pignol. “Generating remote control interfaces for complex appliances”. In 15th annual 



FP-2004-IST-4-27571 Integrated Project IPCity 

 63 

ACM symposium on User interface software and technology, pages 161–170. ACM 
Press, 2002. 

[37] V. Maquil. “Automatic generation of graphical user interfaces in Studierstube”. 
https://www.ims.tuwien.ac.at/publication detail.php?ims id=140, Juli 2004. 

[38] http://www.xulplanet.com/, http://www.mozilla.org/projects/xul/  

[39] Salminen T. and Riekki J. “Lightweight middleware architecture for mobile phones”. 
Proc. 2005 International Conference on Pervasive Systems and Computing, Las 
Vegas, NE, 147-153, 2005.  

[40] Repo, P. and Riekki J. “Middleware support for implementing context-aware multimodal 
user interfaces”. Proceedings of the 3rd international conference on Mobile and 
ubiquitous multimedia. pp. 221 - 227, 2004.  

[41] Ishii, H., and Ullmer, B. “Tangible bits: towards seamless interfaces between people, 
bits and atoms”. In Proceedings of the SIGCHI conference on Human factors in 
computing systems, pages 234–241. ACM Press, 1997.  

[42] Ullmer, B., Ishii, H., and Glas, D. “mediaBlocks: Physical containers, transports, and 
controls for online media”. Computer Graphics, 32(Annual Conference Series):379–
386, 1998.  

[43] Ullmer, B., and Ishii, H. “The metadesk: Models and prototypes for tangible user 
interfaces”. In ACM Symposium on User Interface Software and Technology, pages 
223-232, 1997. 

[44] Camarata, K., Do, E. Y.-L., Johnson, B. R., and Gross, M. D. “Navigational blocks: 
navigating information space with tangible media”. In Proceedings of the 7th 
international conference on Intelligent user interfaces, pages 31-38. ACM Press, 2002. 

[45] Weiser, M. “The computer for the 21st century”. In Scientific American, volume 265 of 
3, pages 94-104, 1991. 

[46] Fitzmaurice, G. W., Ishii, H., and Buxton, W. “Bricks: Laying the foundations for 
graspable user interfaces”. In CHI, pages 442-449, 1995. 

[47] Crampton Smith, G. “The Hand That Rocks the Cradle”. I.D. magazine, May/June 
1995. 

[48] Fitzmaurice, G. W. “Graspable User Interfaces”. PhD thesis, University of Toronto, 
1996. 

[49] Suzuki, H., and Kato, H. “Algoblock: a tangible programming language, a tool for 
collaborative learning”. In Proceedings of 4th European Logo Conference, pages 297-
303, Aug. 1993. 

[50] Adaptive Communication Environment, http://www.cs.wustl.edu/schmidt/ACE.html, 
(13.04.2006) 

[51] SGI OpenInventor, http://oss.sgi.com/projects/inventor, (13.04.2006) 

[52] UIML Homepage, http://uiml.org, (13.04.2006) 

[53] VRPN: virtual reality peripheral network, 2005, U. of North Carolina at Chapel Hill. 
http://www.cs.unc.edu/Research/vrpn/. 

[54] Henning, M. and Vinoski, S., “Advanced CORBA Programming with C++”. Addison-
Wesley, 1999. 

[55] Spiczak, J., DiMaio, S., Reitmayr, G., Schmalstieg, D., Burghart, CR., Samset, E., 
"Multi-Modal Event Streams for Virtual Reality" MultiMedia Computing and Networking 
Conference 07 (San Jose, CA) 



FP-2004-IST-4-27571 Integrated Project IPCity 

 64 

[56] Greenhalgh, C., Izadi, S, Mathrick, J., Humble, J., and Taylor, I. “ECT: A Toolkit to 
Support Rapid Construction of UbiComp Environments”. In Proceedings of UbiSys 
2004, 2004. 



FP6-2004-IST-4-27571 Integrated Project IPCity 

  65 





FP6-2004-IST-4-27571 Integrated Project IPCity 

  67 

Acknowledgements and Further Information 
IPCity is partially funded by the European Commission as part of the sixth framework (FP6-
2004-IST-4-27571 

For further information regarding the IPCity project please visit the project web site at: 

ipcity.eu 


